Skip to content

Commit

Permalink
update file
Browse files Browse the repository at this point in the history
  • Loading branch information
ZHAOBenyun authored Mar 13, 2024
1 parent 354a479 commit abeb4bb
Showing 1 changed file with 25 additions and 21 deletions.
46 changes: 25 additions & 21 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,43 +1,47 @@
<h1 style="text-align: center; font-size: 36px; font-family: 'Sama Devanagari';"> CUBIT: A High-Resolution Infrastructure Defect Dataset <br /> Fully Evaluated with Autonomous Detection Framework
<h1 style="text-align: center; font-size: 32px; font-family: 'Sama Devanagari';"> CUBIT Dataset
</h1>

<h3 style="text-align: center; font-size: 25px; font-family: 'Sama Devanagari';"> Submitted to International Conference on Acoustics, Speech, & Signal Processing 2024 (ICASSP 2024)
<h3 style="text-align: center; font-size: 25px; font-family: 'Sama Devanagari';">
High-Resolution Infrastructure Defect Detection Dataset Sourced by Unmanned Systems and Validated with Deep Learning
</h3>

<h3 style="text-align: center; font-size: 20px; font-family: 'Sama Devanagari';">
Automation in Construction 2024
</h3>


<div style=" text-align: center; font-size: 17px;">
Benyun Zhao<sup>1</sup>, Xunkuai Zhou<sup>2</sup>, Guidong Yang<sup>1</sup>, Junjie Wen<sup>1</sup>, Jihan Zhang<sup>1</sup>, Xi Chen<sup>1</sup>, and <a href="http://www.mae.cuhk.edu.hk/~bmchen/">Ben M. Chen</a><sup>1</sup>, IEEE Fellow
<div style=" text-align: center; font-size: 15px;">
Benyun Zhao<sup>1</sup>, Xunkuai Zhou<sup>2,1</sup>, Guidong Yang<sup>1</sup>, Junjie Wen<sup>1</sup>, Jihan Zhang<sup>1</sup>, Jia Dou<sup>1</sup>, Li Guang<sup>1</sup>, <br> Xi Chen<sup>1</sup>, and <a href="http://www.mae.cuhk.edu.hk/~bmchen/">Ben M. Chen</a><sup>1</sup> IEEE Fellow
</div>
<div style="text-align: center; font-size: 17px;" >
1.Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong <br /> 2.School of Electronics and Information Engineering,Tongji University
<div style="text-align: center; font-size: 12px;" >
1.Department of Mechanical and Automation Engineering, <br>The Chinese University of Hong Kong <br /> 2.School of Electronics and Information Engineering,Tongji University
</div>

<br>
<div style="display: flex; flex-direction: row; margin: 10px auto; justify-content: center" >
<button style="background-color: #000000; color: white;margin-right: 15px; padding: 10px 15px;border: none; border-radius: 5px;">
<a href="#" style="color: white; text-decoration: none;">Paper (coming soon);</a>
<button style="background-color: #000000; color: white;margin-centre: 15px; padding: 10px 15px;border: none; border-radius: 5px;">
<a href="#" style="color: white; text-decoration: none;">Paper (coming soon)</a>
</button>
</div>

<button style="background-color: #000000; color: white;margin-right: 15px; padding: 10px 15px; border: none; border-radius: 5px;">
<!-- <button style="background-color: #000000; color: white;margin-right: 15px; padding: 10px 15px; border: none; border-radius: 5px;">
<a href="https://zhaobenyun.github.io/CUBIT/ICASSP_2024_Appendix.pdf" style="color: white; text-decoration: none;">Supplementary;</a>
</button>
</button> -->

<button style="background-color: #000000; color: white;margin-right: 15px; padding: 10px 15px;border: none; border-radius: 5px;">
<!-- <button style="background-color: #000000; color: white;margin-right: 15px; padding: 10px 15px;border: none; border-radius: 5px;">
<a href="https://zhaobenyun.github.io/CUBIT/" style="color: white; text-decoration: none;">Project Page;</a>
</button>
</div>
</button> -->

<button style="background-color: #000000; color: white;margin-right: 15px; padding: 10px 15px;border: none; border-radius: 5px;">
Dataset will be available at <a href="https://drive.google.com/drive/folders/1LWwEKQ8rSB97fCRD4sG7b6UcK40rSdA2?usp=drive_link" style="color: white; text-decoration: none;">https://drive.google.com/drive/folders/1LWwEKQ8rSB97fCRD4sG7b6UcK40rSdA2?usp=drive_link</a>
</button>
</div>

<button style="background-color: #000000; color: white; margin: 0 auto; padding: 10px 15px;border: none; border-radius: 5px;">
Dataset can be available at: <br><a href="https://drive.google.com/drive/folders/1LWwEKQ8rSB97fCRD4sG7b6UcK40rSdA2?usp=drive_link" style="color: white; text-decoration: none;">https://drive.google.com/drive/folders/1LWwEKQ8rSB97fCRD4sG7b6UcK40rSdA2?usp=drive_link</a>
</button>

<div style="text-align: center; font-family: 'American Typewriter'; font-weight: 400; ">
<!-- <div style="text-align: center; font-family: 'American Typewriter'; font-weight: 400; ">
<h2>Abstract</h2>
</div>
Learning-based visual inspection, integrated with unmanned robotic system, offers a more effective, efficient, and safer alternative for infrastructure inspection tasks that are traditionally heavily reliant on human labor. However, the potential of learning-based inspection methods remains limited due to the lack of publicly available, high-quality datasets. This paper presents CUBIT, a high-resolution defect detection dataset comprising more than $5500$ images with resolutions up to $8000\times6000$ which covers a broader spectrum of practical situations, backgrounds, and defect categories than existing publicly available datasets. We conduct extensive experiments to benchmark the performance of state-of-the-art real-time detection methods on our proposed dataset, validating the effectiveness of it. Moreover, based on the benchmark results, we develop a module named GIPFPP to integrate multi-scale feature, enhancing the AP by 3\% while reducing the number of parameters by 10\% on baseline model. Additionally, a real-site UAV-based inspection has been conducted to verify the reliability of the dataset.
Learning-based visual inspection, integrated with unmanned robotic system, offers a more effective, efficient, and safer alternative for infrastructure inspection tasks that are traditionally heavily reliant on human labor. However, the potential of learning-based inspection methods remains limited due to the lack of publicly available, high-quality datasets. This paper presents CUBIT, a high-resolution defect detection dataset comprising more than $5500$ images with resolutions up to $8000\times6000$ which covers a broader spectrum of practical situations, backgrounds, and defect categories than existing publicly available datasets. We conduct extensive experiments to benchmark the performance of state-of-the-art real-time detection methods on our proposed dataset, validating the effectiveness of it. Moreover, based on the benchmark results, we develop a module named GIPFPP to integrate multi-scale feature, enhancing the AP by 3\% while reducing the number of parameters by 10\% on baseline model. Additionally, a real-site UAV-based inspection has been conducted to verify the reliability of the dataset. -->
<div style="text-align: center; font-family: 'American Typewriter'; font-weight: 400; ">
<h2>Sample images in CUBIT</h2>
Expand All @@ -52,13 +56,13 @@ Image Resolution | Year | Structure Type | Number of Images | Defect Type | Anno
<img src="./sample.png" width=80% height=80%>
</p>
<div style="text-align: center; font-family: 'American Typewriter'; font-weight: 400; ">
<!-- <div style="text-align: center; font-family: 'American Typewriter'; font-weight: 400; ">
<h2>Defect Detection Framework based on CUBIT</h2>
</div>
The visualization of defect detection framework based on CUBIT dataset is illustrated below, which encompasses the entire process: data collection by autonomous unmanned system; the baseline network integrated with our GIPFPP module; the output of defect detection results.
<p align="center">
<img src="./frame.png" width=80% height=80%>
</p>
</p> -->

<div style="text-align: center; font-family: 'American Typewriter'; font-weight: 400; ">
<h2>Acknowledgement</h2>
Expand Down

0 comments on commit abeb4bb

Please sign in to comment.