forked from quan-meng/gnerf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
534 lines (421 loc) · 23 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import os
import time
import itertools
import torch
import numpy as np
import imageio
from tqdm import tqdm
from torch import autograd
from torchvision.transforms import Resize
import torch.nn.functional as F
from torchvision import utils
from tools.utils import plot_camera_scene
from tools.ray_utils import pose_to_d9
from tools.similarity import psnr, ssim, lpips
class Trainer(object):
def __init__(self, cfg, generator, discriminator, inv_net, train_pose_params, val_pose_params,
optim_g, optim_d, optim_i, optim_t, optim_v,
scheduler_g, scheduler_d, scheduler_i, scheduler_t, scheduler_v,
train_loader, eval_loader, dynamic_patch_sampler, static_patch_sampler, full_img_sampler,
writer, device, it=-1, epoch=-1, psnr_best=-float('inf')):
self.cfg = cfg
self.generator = generator
self.discriminator = discriminator
self.inv_net = inv_net
self.train_pose_params = train_pose_params
self.val_pose_params = val_pose_params
self.optim_g = optim_g
self.optim_d = optim_d
self.optim_i = optim_i
self.optim_t = optim_t
self.optim_v = optim_v
self.scheduler_g = scheduler_g
self.scheduler_d = scheduler_d
self.scheduler_i = scheduler_i
self.scheduler_t = scheduler_t
self.scheduler_v = scheduler_v
self.train_loader = train_loader
self.eval_loader = eval_loader
self.dynamic_patch_sampler = dynamic_patch_sampler
self.static_patch_sampler = static_patch_sampler
self.full_img_sampler = full_img_sampler
self.writer = writer
self.device = device
self.it = it
self.epoch = epoch
self.psnr_best = psnr_best
self.out_dir = cfg.out_dir
self.ckpt_dir = cfg.ckpt_dir
self.log_dir = cfg.log_dir
self.video_dir = cfg.video_dir
self.batch_size = self.cfg.batch_size
self.patch_size = self.cfg.patch_size
self.start_img_wh = torch.tensor([self.patch_size, self.patch_size] if self.cfg.progressvie_training
else self.cfg.img_wh, device=self.device)
self.img_wh_curr = self.start_img_wh
self.img_wh_end = torch.tensor(self.cfg.img_wh, device=device)
self.phase = 'A'
def train(self):
val_imgs = []
for rgb_i, _ in self.eval_loader:
val_imgs.append(rgb_i)
val_imgs_raw = torch.cat(val_imgs).to(self.device) # [N, 3, H, W]
for self.epoch in itertools.count(self.epoch + 1, 1):
if self.epoch > self.cfg.num_epoch:
break
for img_real, pose_indices in self.train_loader:
t_it = time.time()
self.it += 1
loss_dict, metrics, imgs = {}, {}, {}
nbatch = img_real.shape[0]
img_real = img_real.to(self.device)
if self.it <= self.cfg.begin_refine:
self.phase = 'A'
elif self.cfg.begin_refine < self.it <= self.cfg.progressive_end:
self.phase = 'ABAB'
else:
self.phase = 'B'
if self.cfg.progressvie_training:
img_real = self.progressvie_training(img_real)
val_imgs = self.progressvie_training(val_imgs_raw)
self.generator.ray_sampler.update_intrinsic(self.img_wh_curr / self.img_wh_end)
if self.cfg.decrease_noise:
self.generator.decrease_noise(self.it)
self.dynamic_patch_sampler.iterations = self.it
self.generator.train()
self.discriminator.train()
self.inv_net.train()
self.train_pose_params.train()
self.val_pose_params.train()
patch_real, coords_real, scales_real = self.dynamic_patch_sampler.image2patch(
img_real, self.cfg.patch_size, self.device)
coords_fake, scales_fake = self.dynamic_patch_sampler(
nbatch, self.cfg.patch_size, self.device)
imgs['Dynamic_patch/real'] = patch_real
if self.phase == 'A' or self.phase == 'ABAB':
# Train the generator
patch_fake, poses = self.generator_trainstep(coords_fake, scales_fake, loss_dict)
imgs['Dynamic_patch_fake/coarse'] = patch_fake[:4]
imgs['Dynamic_patch_fake/fine'] = patch_fake[self.batch_size:self.batch_size + 4]
# Train the discriminator
self.discriminator_trainstep(patch_real, patch_fake, scales_real, scales_fake, loss_dict)
# Train the inversion network
coords_fake, _ = self.static_patch_sampler(nbatch, self.cfg.inv_size, self.device)
img_fake_fine = self.inversion_net_trainstep(coords_fake, loss_dict)
imgs['Static_patch_fake'] = img_fake_fine
# regularize poses of training images along with the generator
img_real, _, _ = self.static_patch_sampler.image2patch(img_real, self.cfg.inv_size, self.device)
self.training_pose_regularization(img_real, pose_indices, loss_dict)
# regularize poses of evaluation images
img_real, _, _ = self.static_patch_sampler.image2patch(val_imgs, self.cfg.inv_size, self.device)
self.val_pose_regularization(img_real, loss_dict)
# Refine the camera poses and NeRF
if self.phase == 'ABAB' or self.phase == 'B':
patch_fake_fine = self.training_refine_step(patch_real, coords_real, pose_indices, loss_dict)
imgs['Dynamic_patch/fake'] = patch_fake_fine
if self.it % 8 == 0:
img_real, coords_real, _ = self.dynamic_patch_sampler.image2patch(
val_imgs, self.cfg.patch_size, self.device)
self.val_refine_step(img_real, coords_real, loss_dict)
fps = nbatch / (time.time() - t_it)
for k, v in loss_dict.items():
self.writer.add_scalar(f'Training/{k}', v, self.it)
# Update learning rate
self.scheduler_g.step()
self.scheduler_d.step()
self.scheduler_i.step()
self.scheduler_t.step()
self.scheduler_v.step()
# Evaluation
with torch.no_grad():
self.generator.eval()
if (self.it % self.cfg.print_every) == 0:
print(f"{self.out_dir.split('/')[-1]}: {self.epoch:05d}/{self.it:05d}, phase={self.phase}, " +
f", ".join("{}={:.4f}".format(k, v) for k, v in loss_dict.items()) +
f", fps: {fps:.2f}")
if ((self.it % self.cfg.sample_every) == 0) or ((self.it <= 500) and (self.it % 100 == 0)):
poses_val = self.val_pose_params()
coords_val, _ = self.full_img_sampler(val_imgs.shape[0], self.img_wh_curr, self.device)
results = self.generator(coords_val, self.img_wh_curr, poses_val)
if self.img_wh_end[0] > self.img_wh_curr[0] or self.img_wh_end[1] > self.img_wh_curr[1]:
rescale_func = Resize((self.img_wh_end[1], self.img_wh_end[0]))
results = {k: rescale_func(v) for k, v in results.items()}
for k, v in results.items():
if k == 'depth':
v = (v + 1.0) / 2.0
v = (v - v.min()) / (v.max() - v.min() + 1e-8)
v = v * 2.0 - 1.0
v = utils.make_grid(v[:4], nrow=4,
normalize=True,
value_range=(-1, 1))
self.writer.add_image(k, v, self.it)
real_image = utils.make_grid(val_imgs_raw[:4],
normalize=True,
value_range=(-1, 1))
self.writer.add_image('real_image', real_image, self.it)
metrics['psnr'] = psnr(results['rgb'], val_imgs_raw)
metrics['ssim'] = ssim(results['rgb'], val_imgs_raw)
lpips_ = []
for rgb_pred, rgb_gt in zip(results['rgb'], val_imgs_raw):
lpips_.append(lpips(rgb_pred, rgb_gt, device=self.device))
metrics['lpips'] = sum(lpips_) / len(lpips_)
for k, v in metrics.items():
self.writer.add_scalar(f'Val/{k}', v, self.it)
self.writer.add_scalar('lr/discriminator', self.optim_d.param_groups[0]['lr'], self.it)
self.writer.add_scalar('lr/generator', self.optim_g.param_groups[0]['lr'], self.it)
self.writer.add_scalar('lr/inversion_net', self.optim_i.param_groups[0]['lr'], self.it)
self.writer.add_scalar('lr/poses_training', self.optim_t.param_groups[0]['lr'], self.it)
self.writer.add_scalar('lr/poses_val', self.optim_v.param_groups[0]['lr'], self.it)
self.writer.add_scalar('img_wh_curr/w', self.img_wh_curr[0], self.it)
self.writer.add_scalar('img_wh_curr/h', self.img_wh_curr[1], self.it)
self.writer.add_scalar(
'scales_curr/min_scale', self.dynamic_patch_sampler.scales_curr[0], self.it)
self.writer.add_scalar(
'scales_curr/max_scale', self.dynamic_patch_sampler.scales_curr[1], self.it)
self.writer.add_scalar('noise_std', self.generator.noise_std, self.it)
self.writer.add_scalar('Val/psnr_best', self.psnr_best, self.it)
for k, v in imgs.items():
v = utils.make_grid(v, nrow=v.shape[0] // int(v.size(0) ** 0.5),
normalize=True,
value_range=(-1, 1))
self.writer.add_image(k, v, self.it)
cams_img = plot_camera_scene(self.train_pose_params.poses, self.val_pose_params.poses,
max(self.cfg.radius), f'Iteration_{self.it}')
self.writer.add_image('poses', cams_img, self.it)
if (self.it % self.cfg.save_every) == 0:
state_dict = {
'g': self.generator.state_dict(), 'optim_g': self.optim_g.state_dict(),
'd': self.discriminator.state_dict(), 'optim_d': self.optim_d.state_dict(),
'i': self.inv_net.state_dict(), 'optim_i': self.optim_i.state_dict(),
't': self.train_pose_params.state_dict(), 'optim_t': self.optim_t.state_dict(),
'v': self.val_pose_params.state_dict(), 'optim_v': self.optim_v.state_dict(),
'args': vars(self.cfg), 'it': self.it, 'epoch': self.epoch, 'psnr_best': self.psnr_best}
torch.save(state_dict, os.path.join(self.ckpt_dir, f'{str(self.it).zfill(6)}.pt'))
if metrics['psnr'] >= self.psnr_best:
self.psnr_best = metrics['psnr']
torch.save(state_dict, os.path.join(self.ckpt_dir, 'model_best.pt'))
if ((self.it + 1) % self.cfg.video_every) == 0:
self.make_video(120)
if ((self.it + 1) % self.cfg.empty_cache_every) == 0:
torch.cuda.empty_cache()
print("End of Training")
def progressvie_training(self, img):
if self.phase == 'A':
scale = 1.0 / self.cfg.begin_refine * self.it
self.img_wh_curr = self.start_img_wh + ((128.0 - self.start_img_wh) * scale).int()
elif self.phase == 'ABAB':
img_scale_base = self.cfg.begin_refine / self.cfg.progressive_end
scale = img_scale_base + (1.0 - img_scale_base) / (self.cfg.progressive_end - self.cfg.begin_refine) * (
self.it - self.cfg.begin_refine)
self.img_wh_curr = 128 + ((self.img_wh_end - 128.0) / (1.0 - img_scale_base) * (
scale - img_scale_base)).int()
else:
return img
downsample_func = Resize((self.img_wh_curr[1], self.img_wh_curr[0]))
img = downsample_func(img)
return img
def generator_trainstep(self, coords, scales, loss_dict):
self.toggle_grad(self.generator, True)
self.toggle_grad(self.discriminator, False)
self.toggle_grad(self.train_pose_params, False)
self.toggle_grad(self.val_pose_params, False)
self.toggle_grad(self.inv_net, False)
self.generator.zero_grad()
fake_patch_coarse, fake_patch_fine, poses = self.generator(coords, self.img_wh_curr)
patch_fake = torch.cat((fake_patch_coarse, fake_patch_fine), dim=0)
d_fake = self.discriminator(patch_fake, scales.repeat(2, 1, 1, 1))
gloss = self.compute_loss(d_fake, 1)
gloss.backward()
self.optim_g.step()
loss_dict['generator'] = gloss.detach()
return patch_fake.detach(), poses.detach()
def discriminator_trainstep(self, patch_real, patch_fake, scales_real, scales_fake, loss_dict):
self.toggle_grad(self.generator, False)
self.toggle_grad(self.discriminator, True)
self.toggle_grad(self.train_pose_params, False)
self.toggle_grad(self.val_pose_params, False)
self.toggle_grad(self.inv_net, False)
self.optim_d.zero_grad()
# On real data
patch_real.requires_grad_()
d_real = self.discriminator(patch_real, scales_real)
dloss_real = self.compute_loss(d_real, 1)
if self.cfg.reg_type == 'real' or self.cfg.reg_type == 'real_fake':
dloss_real.backward(retain_graph=True)
reg = self.cfg.reg_param * self.compute_grad2(d_real, patch_real).mean()
reg.backward()
else:
dloss_real.backward()
# On fake data
patch_fake.requires_grad_()
d_fake = self.discriminator(patch_fake.contiguous(), scales_fake.repeat(2, 1, 1, 1).contiguous())
dloss_fake = self.compute_loss(d_fake, 0)
if self.cfg.reg_type == 'fake' or self.cfg.reg_type == 'real_fake':
dloss_fake.backward(retain_graph=True)
reg = self.cfg.reg_param * self.compute_grad2(d_fake, patch_fake).mean()
reg.backward()
else:
dloss_fake.backward()
if self.cfg.reg_type == 'wgangp':
reg = self.cfg.reg_param * self.wgan_gp_reg(patch_real.repeat(2, 1, 1, 1), patch_fake,
scales_fake.repeat(2, 1, 1, 1))
reg.backward()
elif self.cfg.reg_type == 'wgangp0':
reg = self.cfg.reg_param * self.wgan_gp_reg(patch_real.repeat(2, 1, 1, 1), patch_fake,
scales_fake.repeat(2, 1, 1, 1), center=0.)
reg.backward()
self.optim_d.step()
# Output
dloss = (dloss_real + dloss_fake)
if self.cfg.reg_type == 'none':
reg = torch.tensor(0.)
loss_dict['discriminator'] = dloss.detach()
loss_dict['regularizer'] = reg.detach()
def inversion_net_trainstep(self, coords, loss_dict):
self.toggle_grad(self.generator, False)
self.toggle_grad(self.discriminator, False)
self.toggle_grad(self.train_pose_params, False)
self.toggle_grad(self.val_pose_params, False)
self.toggle_grad(self.inv_net, True)
self.optim_i.zero_grad()
img_fake_coarse, img_fake_fine, poses = self.generator(coords, self.img_wh_curr)
if self.cfg.pose_mode == '3d':
d_fake = poses[:, :, -1] # [N, 3]
elif self.cfg.pose_mode == '6d':
d_fake = pose_to_d9(poses) # [N, 9]
else:
raise NotImplementedError
x_fake_full = torch.cat((img_fake_coarse, img_fake_fine), dim=0)
x_trans_em = self.inv_net(x_fake_full) # [N, D]
eloss = torch.mean((x_trans_em - d_fake.repeat(2, 1)) ** 2)
eloss.backward()
self.optim_i.step()
loss_dict['inversion'] = eloss.detach()
return img_fake_fine.detach()
def training_pose_regularization(self, img_real, pose_indices, loss_dict):
self.toggle_grad(self.train_pose_params, True)
self.toggle_grad(self.val_pose_params, False)
self.toggle_grad(self.generator, False)
self.toggle_grad(self.discriminator, False)
self.toggle_grad(self.inv_net, False)
self.optim_t.zero_grad()
# On real data
train_poses_real = self.train_pose_params(pose_indices)
if self.cfg.pose_mode == '3d':
train_d_real = train_poses_real[:, :, -1] # [N, 3]
elif self.cfg.pose_mode == '6d':
train_d_real = pose_to_d9(train_poses_real) # [N, 9]
else:
raise NotImplementedError
train_x_trans_em = self.inv_net(img_real)
ploss = torch.mean((train_x_trans_em - train_d_real) ** 2) * 0.1
ploss.backward()
self.optim_t.step()
loss_dict['pose_training'] = ploss.detach()
def val_pose_regularization(self, patch_real, loss_dict):
self.toggle_grad(self.train_pose_params, False)
self.toggle_grad(self.val_pose_params, True)
self.toggle_grad(self.generator, False)
self.toggle_grad(self.discriminator, False)
self.toggle_grad(self.inv_net, False)
self.optim_v.zero_grad()
val_poses_real = self.val_pose_params()
if self.cfg.pose_mode == '3d':
val_d_real = val_poses_real[:, :, -1]
elif self.cfg.pose_mode == '6d':
val_d_real = pose_to_d9(val_poses_real) # [N, 9]
else:
raise NotImplementedError
val_x_trans_em = self.inv_net(patch_real)
val_ploss = torch.mean((val_x_trans_em - val_d_real) ** 2) * 0.1
val_ploss.backward()
self.optim_v.step()
loss_dict['pose_val'] = val_ploss.detach()
def training_refine_step(self, patch_real, coords_real, pose_indices, loss_dict):
self.toggle_grad(self.generator, True)
self.toggle_grad(self.train_pose_params, True)
self.toggle_grad(self.val_pose_params, False)
self.toggle_grad(self.discriminator, False)
self.toggle_grad(self.inv_net, False)
self.optim_g.zero_grad()
self.optim_t.zero_grad()
# On real data
poses = self.train_pose_params(pose_indices)
patch_fake_coarse, patch_fake_fine, _ = self.generator(coords_real, self.img_wh_curr, poses)
patch_fake = torch.cat((patch_fake_coarse, patch_fake_fine), dim=0)
rloss = F.mse_loss(patch_fake, patch_real.repeat(2, 1, 1, 1), reduction='mean') * 50.0
rloss.backward()
self.optim_t.step()
self.optim_g.step()
loss_dict['refine_training'] = rloss.detach()
return patch_fake_fine.detach()
def val_refine_step(self, img_real, coords_real, loss_dict):
self.toggle_grad(self.generator, False)
self.toggle_grad(self.train_pose_params, False)
self.toggle_grad(self.val_pose_params, True)
self.toggle_grad(self.discriminator, False)
self.toggle_grad(self.inv_net, False)
self.optim_v.zero_grad()
# On real data
poses = self.val_pose_params()
img_fake_coarse, img_fake_fine, _ = self.generator(coords_real, self.img_wh_curr, poses)
img_fake = torch.cat((img_fake_coarse, img_fake_fine), dim=0)
rloss = F.mse_loss(img_fake, img_real.repeat(2, 1, 1, 1), reduction='mean') * 50.0
rloss.backward()
self.optim_v.step()
loss_dict['refine_val'] = rloss.detach()
def toggle_grad(self, model, requires_grad):
for p in model.parameters():
p.requires_grad_(requires_grad)
def compute_grad2(self, d_outs, x_in):
d_outs = [d_outs] if not isinstance(d_outs, list) else d_outs
reg = 0
for d_out in d_outs:
batch_size = x_in.size(0)
grad_dout = autograd.grad(
outputs=d_out.sum(), inputs=x_in,
create_graph=True, retain_graph=True, only_inputs=True
)[0]
grad_dout2 = grad_dout.pow(2)
assert (grad_dout2.size() == x_in.size())
reg += grad_dout2.view(batch_size, -1).sum(1)
return reg / len(d_outs)
def compute_loss(self, d_outs, target):
d_outs = [d_outs] if not isinstance(d_outs, list) else d_outs
loss = torch.tensor(0.0, device=d_outs[0].device)
for d_out in d_outs:
targets = d_out.new_full(size=d_out.size(), fill_value=target)
if self.cfg.gan_type == 'standard':
loss += F.binary_cross_entropy_with_logits(d_out, targets)
elif self.cfg.gan_type == 'wgan':
loss += (2 * target - 1) * d_out.mean()
else:
raise NotImplementedError
return loss / len(d_outs)
def wgan_gp_reg(self, x_real, x_fake, y, center=1.):
batch_size = y.size(0)
eps = torch.rand(batch_size, device=y.device).view(batch_size, 1, 1, 1)
x_interp = (1 - eps) * x_real + eps * x_fake
x_interp = x_interp.detach()
x_interp.requires_grad_()
d_out = self.discriminator(x_interp, y)
reg = (self.compute_grad2(d_out, x_interp).sqrt() - center).pow(2).mean()
return reg
def make_video(self, nframes=40):
chunk = self.batch_size
coords, _ = self.full_img_sampler(chunk, self.img_wh_curr, self.device)
poses = self.generator.ray_sampler.spheric_poses(nframes).to(self.device)
rescale_func = Resize((self.img_wh_end[1], self.img_wh_end[0]))
rgbs, depths = [], []
for i in tqdm(range(0, nframes, chunk)):
results = self.generator(coords, self.img_wh_curr, poses[i:i + chunk])
if self.img_wh_end[0] > self.img_wh_curr[0] or self.img_wh_end[1] > self.img_wh_curr[1]:
results = {k: rescale_func(v) for k, v in results.items()}
rgbs.append(results['rgb'])
depths.append(results['depth'])
rgbs = torch.cat(rgbs) # [N, 3, h, w]
depths = torch.cat(depths)
rgbs = ((rgbs.cpu().permute(0, 2, 3, 1) / 2 + 0.5).numpy().clip(0, 1) * 255).astype(np.uint8)
imageio.mimwrite(os.path.join(self.video_dir, f'rgb_{self.it:04}.gif'), rgbs, fps=24)
depths = (depths.cpu().permute(0, 2, 3, 1).numpy().clip(0, 1) * 255).astype(np.uint8)
imageio.mimwrite(os.path.join(self.video_dir, f'depth_{self.it:04}.gif'), depths, fps=24)