-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'origin/main'
- Loading branch information
Showing
3 changed files
with
173 additions
and
31 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import os | ||
import numpy as np | ||
import math | ||
import cv2 | ||
|
||
|
||
|
||
def psnr(img1, img2): | ||
mse = np.mean((img1/1. - img2/1.) ** 2 ) | ||
if mse < 1.0e-10: | ||
return 100*1.0 | ||
return 10 * math.log10(255.0*255.0/mse) | ||
|
||
def mse(img1,img2): | ||
mse = np.mean((img1/1. - img2/1.) ** 2 ) | ||
return mse | ||
|
||
def ssim(y_true , y_pred): | ||
u_true = np.mean(y_true) | ||
u_pred = np.mean(y_pred) | ||
var_true = np.var(y_true) | ||
var_pred = np.var(y_pred) | ||
std_true = np.sqrt(var_true) | ||
std_pred = np.sqrt(var_pred) | ||
c1 = np.square(0.01*7) | ||
c2 = np.square(0.03*7) | ||
ssim = (2 * u_true * u_pred + c1) * (2 * std_pred * std_true + c2) | ||
denom = (u_true ** 2 + u_pred ** 2 + c1) * (var_pred + var_true + c2) | ||
return ssim / denom | ||
|
||
list_psnr = [] | ||
list_ssim = [] | ||
list_mse = [] | ||
for j in range(1,11): | ||
path1 = f"/public/home/chenzheng/CV_final_proj/CV2-Final/diffusion/sampling/{j}/" #指定输出结果文件夹 | ||
path2 = f"/public/home/chenzheng/CV_final_proj/CV2-Final/diffusion/sampling/{j}/"#指定原图文件夹 | ||
f_nums = len(os.listdir(path1)) | ||
#change if you sample more. | ||
for i in range(0,4): | ||
img_a = cv2.imread(path1+str(i)+'.png') | ||
img_b = cv2.imread(path2+'gt.png') | ||
psnr_num = psnr(img_a, img_b) | ||
ssim_num = ssim(img_a, img_b) | ||
mse_num = mse(img_a,img_b) | ||
list_ssim.append(ssim_num) | ||
list_psnr.append(psnr_num) | ||
list_mse.append(mse_num) | ||
print("平均PSNR:",np.mean(list_psnr))#,list_psnr) | ||
print("平均SSIM:",np.mean(list_ssim))#,list_ssim) | ||
print("平均MSE:",np.mean(list_mse))#,list_mse) |