-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
179 lines (135 loc) · 6.28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import numpy as np
import torch.nn.functional as F
import torchvision.transforms.functional
from tqdm import tqdm
from matplotlib import pyplot as plt
def dev():
return torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def logsnr_schedule_cosine(t, *, logsnr_min=-20., logsnr_max=20.):
b = np.arctan(np.exp(-.5 * logsnr_max))
a = np.arctan(np.exp(-.5 * logsnr_min)) - b
return -2. * torch.log(torch.tan(a * t + b))
def xt2batch(x, logsnr, z, R, T, K):
return {
'x': x,
'z': z,
'logsnr': torch.stack([logsnr_schedule_cosine(torch.zeros_like(logsnr)), logsnr], dim=1),
'R': R,
't': T,
'K': K,
}
def q_sample(z, logsnr, noise):
# lambdas = logsnr_schedule_cosine(t)
alpha = logsnr.sigmoid().sqrt()
sigma = (-logsnr).sigmoid().sqrt()
alpha = alpha[:, None, None, None]
sigma = sigma[:, None, None, None]
return alpha * z + sigma * noise
def p_losses(denoise_model, img, R, T, K, logsnr, hue_delta, noise=None, loss_type="l2", cond_prob=0.1,
use_color_loss=False, use_hue_loss=False):
B, N, C, H, W = img.shape
x = img[:, 0]
z = img[:, 1]
if noise is None:
noise = torch.randn_like(x)
z_noisy = q_sample(z=z, logsnr=logsnr, noise=noise)
cond_mask = (torch.rand((B,)) > cond_prob)
x_condition = torch.where(cond_mask[:, None, None, None], x, torch.randn_like(x))
batch = xt2batch(x=x_condition, logsnr=logsnr, z=z_noisy, R=R, T=T, K=K)
if use_hue_loss:
predicted_noise, hue_pred = denoise_model(batch, cond_mask=cond_mask)
else:
predicted_noise = denoise_model(batch, cond_mask=cond_mask)
if loss_type == 'l1':
loss = F.l1_loss(noise.to(dev()), predicted_noise)
elif loss_type == 'l2':
loss = F.mse_loss(noise.to(dev()), predicted_noise)
elif loss_type == "huber":
loss = F.smooth_l1_loss(noise.to(dev()), predicted_noise)
else:
raise NotImplementedError()
# rec_img = reconstruct_z_start(z_noisy.to(dev()), predicted_noise, logsnr.to(dev()))
# plt.subplot(1, 2, 1)
# plt.imshow(rec_img[0].permute(1, 2, 0).detach().cpu().numpy())
# plt.axis('off')
# plt.subplot(1, 2, 2)
# plt.imshow(z[0].permute(1, 2, 0).detach().cpu().numpy())
# plt.axis('off')
# plt.savefig("test.png")
# plt.show()
if use_color_loss:
rec_img = reconstruct_z_start(z_noisy.to(dev()), predicted_noise, logsnr.to(dev()))
img_color_mean = torch.mean(z, dim=(2, 3))
rec_color_mean = torch.mean(rec_img, dim=(2, 3))
color_loss = torch.nn.MSELoss()
color_loss = ((logsnr.to(dev()) + 20) / 20 * color_loss(img_color_mean.to(dev()), rec_color_mean)).mean()
return loss + color_loss
if use_hue_loss:
x = x * 0.5 + 0.5
recovered_img = torch.stack(
[torchvision.transforms.functional.adjust_hue(x[i], hue_delta[i]) for i in range(B)])
hue_loss_weight = F.mse_loss(recovered_img.to(dev()) * 255, x.to(dev()) * 255)
hue_loss = 0.01 * F.mse_loss(hue_pred.squeeze(), hue_delta.to(hue_pred))
hue_loss = hue_loss_weight * hue_loss
return loss + hue_loss
else:
return loss
@torch.no_grad()
def sample(model, img, R, T, K, w, timesteps=256):
x = img[:, 0]
img = torch.randn_like(x)
imgs = []
logsnrs = logsnr_schedule_cosine(torch.linspace(1., 0., timesteps + 1)[:-1])
logsnr_nexts = logsnr_schedule_cosine(torch.linspace(1., 0., timesteps + 1)[1:])
for logsnr, logsnr_next in tqdm(zip(logsnrs, logsnr_nexts)): # [1, ..., 0] = size is 257
img = p_sample(model, x=x, z=img, R=R, T=T, K=K, logsnr=logsnr, logsnr_next=logsnr_next, w=w) # [B, C, H, W]
imgs.append(img.cpu().numpy())
return imgs
def reconstruct_z_start(z_noisy, pred_noise, logsnr):
B = z_noisy.shape[0]
logsnr_next = torch.tensor([20.0] * B).to(dev())
c = - torch.special.expm1(logsnr - logsnr_next)[:, None, None, None]
squared_alpha, squared_alpha_next = logsnr.sigmoid(), logsnr_next.sigmoid()
squared_sigma, squared_sigma_next = (-logsnr).sigmoid(), (-logsnr_next).sigmoid()
alpha, sigma, alpha_next = map(lambda a: a.sqrt(), (squared_alpha, squared_sigma, squared_alpha_next))
alpha = alpha[:, None, None, None]
sigma = sigma[:, None, None, None]
alpha_next = alpha_next[:, None, None, None]
z_start = (z_noisy - sigma * pred_noise) / alpha
z_start.clamp_(-1., 1.)
z_start = alpha_next * (z_noisy * (1 - c) / alpha + c * z_start)
return z_start
@torch.no_grad()
def p_sample(model, x, z, R, T, K, logsnr, logsnr_next, w):
model_mean, model_variance = p_mean_variance(model, x=x, z=z, R=R, T=T, K=K, logsnr=logsnr, logsnr_next=logsnr_next,
w=w)
if logsnr_next == 0:
return model_mean
return model_mean + model_variance.sqrt() * torch.randn_like(x).cpu()
@torch.no_grad()
def p_mean_variance(model, x, z, R, T, K, logsnr, logsnr_next, w=2.0):
b = x.shape[0]
w = w[:, None, None, None]
c = - torch.special.expm1(logsnr - logsnr_next)
# c = 1 - e^{\lambda_t - \lambda_s}
squared_alpha, squared_alpha_next = logsnr.sigmoid(), logsnr_next.sigmoid()
squared_sigma, squared_sigma_next = (-logsnr).sigmoid(), (-logsnr_next).sigmoid()
alpha, sigma, alpha_next = map(lambda a: a.sqrt(), (squared_alpha, squared_sigma, squared_alpha_next))
batch = xt2batch(x, logsnr.repeat(b), z, R, T, K)
if model.module.use_hue_decoder:
pred_noise, _ = model(batch, cond_mask=torch.tensor([True] * b))
pred_noise = pred_noise.detach().cpu()
pred_noise_unconditioned, _ = model(batch, cond_mask=torch.tensor([False] * b))
pred_noise_unconditioned = pred_noise_unconditioned.detach().cpu()
else:
pred_noise = model(batch, cond_mask=torch.tensor([True] * b)).detach().cpu()
pred_noise_unconditioned = model(batch, cond_mask=torch.tensor([False] * b)).detach().cpu()
batch['x'] = torch.randn_like(x)
pred_noise_final = (1 + w) * pred_noise - w * pred_noise_unconditioned
z = z.detach().cpu()
z_start = (z - sigma * pred_noise_final) / alpha
z_start.clamp_(-1., 1.)
model_mean = alpha_next * (z * (1 - c) / alpha + c * z_start)
posterior_variance = squared_sigma_next * c
return model_mean, posterior_variance