-
Notifications
You must be signed in to change notification settings - Fork 149
Paper Models Inference
Yuval Nirkin edited this page May 5, 2020
·
1 revision
First make sure you have all the latest version models in fsgan/weights directory. Fill out this form, place download_fsgan_models.py in the root directory of the fsgan repository, and run:
python download_fsgan_models.py
Checkout the v1 branch:
git checkout v1
Single source and target:
python face_swap_video2video.py ../docs/examples/shinzo_abe.mp4 -t ../docs/examples/conan_obrien.mp4 -o .
Batch version
All possible pairs in a directory:
python face_swap_video2video_batch.py <input directory> -o <output directory>
Source and target directories:
python face_swap_video2video_batch.py <source directory> <target directory> -o <output directory>
Root directory and a pairs list file containing two relative paths to videos in each row:
python face_swap_video2video_batch.py <root directory> <pairs list file> -o <output directory>
- Set --verbose to 1 to generate the ablation figure or set --verbose to 2 to output the complete debug information.
- Set --output_crop to output cropped frames around the head.
- Set --reverse_output to reverse the output name to be <target>_<source>.
python face_swap_image2video.py <source image> -t <target video> -o <output directory>
python face_swap_video2images.py <source video> -t <target images directory> -o <output directory>
python face_swap_images2images.py <source images directory> -t <target images directory> -o <output directory>
Simple version (used to generate the qualitative face reenactment figures):
python reenactment.py <source image> -t <target video> -o <output directory>
Recurrent version (used to generate the reenactment limitations figure):
python reenactment_stepwise.py <source image> -t <target video> -o <output directory>
Single source and target:
python expression_reenactment_video2video.py <source video> -t <target video> -o <output directory>
Batch version
All possible pairs in a directory:
python expression_reenactment_video2video_batch.py <input directory> -o <output directory>
Source and target directories:
python expression_reenactment_video2video_batch.py <source directory> <target directory> -o <output directory>
Root directory and a pairs list file containing two relative paths to videos in each row:
python expression_reenactment_video2video_batch.py <root directory> <pairs list file> -o <output directory>