-
Notifications
You must be signed in to change notification settings - Fork 215
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #17 from CJWBW/replicate
Add Docker environment & web demo
- Loading branch information
Showing
3 changed files
with
350 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
build: | ||
gpu: true | ||
python_version: "3.8" | ||
system_packages: | ||
- "libgl1-mesa-glx" | ||
- "libglib2.0-0" | ||
- "libsox-fmt-mp3" | ||
python_packages: | ||
- "torch==1.7.1" | ||
- "torchvision==0.8.2" | ||
- "numpy==1.18.1" | ||
- "ipython==7.21.0" | ||
- "Pillow==8.3.1" | ||
- "scikit-image==0.18.3" | ||
- "librosa==0.7.2" | ||
- "tqdm==4.62.3" | ||
- "scipy==1.7.1" | ||
- "dominate==2.6.0" | ||
- "albumentations==0.5.2" | ||
- "beautifulsoup4==4.10.0" | ||
- "sox==1.4.1" | ||
- "h5py==3.4.0" | ||
- "numba==0.48" | ||
- "moviepy==1.0.3" | ||
run: | ||
- apt update -y && apt-get install ffmpeg -y | ||
- apt-get install sox libsox-fmt-mp3 -y | ||
- pip install opencv-python==4.1.2.30 | ||
|
||
predict: "predict.py:Predictor" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,319 @@ | ||
import os | ||
import subprocess | ||
from os.path import join | ||
import yaml | ||
import tempfile | ||
import argparse | ||
from pathlib import Path | ||
from skimage.io import imread | ||
import numpy as np | ||
import librosa | ||
from util import util | ||
from tqdm import tqdm | ||
import torch | ||
from collections import OrderedDict | ||
import cv2 | ||
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip | ||
import cog | ||
import scipy.io as sio | ||
import albumentations as A | ||
from options.test_audio2feature_options import TestOptions as FeatureOptions | ||
from options.test_audio2headpose_options import TestOptions as HeadposeOptions | ||
from options.test_feature2face_options import TestOptions as RenderOptions | ||
from datasets import create_dataset | ||
from models import create_model | ||
from models.networks import APC_encoder | ||
from util.visualizer import Visualizer | ||
from funcs import utils, audio_funcs | ||
from demo import write_video_with_audio | ||
import warnings | ||
|
||
warnings.filterwarnings("ignore") | ||
|
||
|
||
class Predictor(cog.Predictor): | ||
def setup(self): | ||
self.parser = argparse.ArgumentParser() | ||
self.parser.add_argument('--id', default='May', help="person name, e.g. Obama1, Obama2, May, Nadella, McStay") | ||
self.parser.add_argument('--driving_audio', default='data/Input/00083.wav', help="path to driving audio") | ||
self.parser.add_argument('--save_intermediates', default=0, help="whether to save intermediate results") | ||
|
||
@cog.input( | ||
"driving_audio", | ||
type=Path, | ||
help="driving audio, if the file is more than 20 seconds, only the first 20 seconds will be processed for " | ||
"video generation", | ||
) | ||
@cog.input( | ||
"talking_head", | ||
type=str, | ||
options=['May', 'Obama1', 'Obama2', 'Nadella', 'McStay'], | ||
default='May', | ||
help="choose a talking head" | ||
) | ||
def predict(self, driving_audio, talking_head='May'): | ||
|
||
############################### I/O Settings ############################## | ||
# load config files | ||
opt = self.parser.parse_args('') | ||
opt.driving_audio = str(driving_audio) | ||
opt.id = talking_head | ||
with open(join('config', opt.id + '.yaml')) as f: | ||
config = yaml.load(f) | ||
data_root = join('data', opt.id) | ||
|
||
############################ Hyper Parameters ############################# | ||
h, w, sr, FPS = 512, 512, 16000, 60 | ||
mouth_indices = np.concatenate([np.arange(4, 11), np.arange(46, 64)]) | ||
eye_brow_indices = [27, 65, 28, 68, 29, 67, 30, 66, 31, 72, 32, 69, 33, 70, 34, 71] | ||
eye_brow_indices = np.array(eye_brow_indices, np.int32) | ||
|
||
############################ Pre-defined Data ############################# | ||
mean_pts3d = np.load(join(data_root, 'mean_pts3d.npy')) | ||
fit_data = np.load(config['dataset_params']['fit_data_path']) | ||
pts3d = np.load(config['dataset_params']['pts3d_path']) - mean_pts3d | ||
trans = fit_data['trans'][:, :, 0].astype(np.float32) | ||
mean_translation = trans.mean(axis=0) | ||
candidate_eye_brow = pts3d[10:, eye_brow_indices] | ||
std_mean_pts3d = np.load(config['dataset_params']['pts3d_path']).mean(axis=0) | ||
# candidates images | ||
img_candidates = [] | ||
for j in range(4): | ||
output = imread(join(data_root, 'candidates', f'normalized_full_{j}.jpg')) | ||
output = A.pytorch.transforms.ToTensor(normalize={'mean': (0.5, 0.5, 0.5), | ||
'std': (0.5, 0.5, 0.5)})(image=output)['image'] | ||
img_candidates.append(output) | ||
img_candidates = torch.cat(img_candidates).unsqueeze(0).cuda() | ||
|
||
# shoulders | ||
shoulders = np.load(join(data_root, 'normalized_shoulder_points.npy')) | ||
shoulder3D = np.load(join(data_root, 'shoulder_points3D.npy'))[1] | ||
ref_trans = trans[1] | ||
|
||
# camera matrix, we always use training set intrinsic parameters. | ||
camera = utils.camera() | ||
camera_intrinsic = np.load(join(data_root, 'camera_intrinsic.npy')).astype(np.float32) | ||
APC_feat_database = np.load(join(data_root, 'APC_feature_base.npy')) | ||
|
||
# load reconstruction data | ||
scale = sio.loadmat(join(data_root, 'id_scale.mat'))['scale'][0, 0] | ||
Audio2Mel_torch = audio_funcs.Audio2Mel(n_fft=512, hop_length=int(16000 / 120), win_length=int(16000 / 60), | ||
sampling_rate=16000, | ||
n_mel_channels=80, mel_fmin=90, mel_fmax=7600.0).cuda() | ||
|
||
########################### Experiment Settings ########################### | ||
#### user config | ||
use_LLE = config['model_params']['APC']['use_LLE'] | ||
Knear = config['model_params']['APC']['Knear'] | ||
LLE_percent = config['model_params']['APC']['LLE_percent'] | ||
headpose_sigma = config['model_params']['Headpose']['sigma'] | ||
Feat_smooth_sigma = config['model_params']['Audio2Mouth']['smooth'] | ||
Head_smooth_sigma = config['model_params']['Headpose']['smooth'] | ||
Feat_center_smooth_sigma, Head_center_smooth_sigma = 0, 0 | ||
AMP_method = config['model_params']['Audio2Mouth']['AMP'][0] | ||
Feat_AMPs = config['model_params']['Audio2Mouth']['AMP'][1:] | ||
rot_AMP, trans_AMP = config['model_params']['Headpose']['AMP'] | ||
shoulder_AMP = config['model_params']['Headpose']['shoulder_AMP'] | ||
save_feature_maps = config['model_params']['Image2Image']['save_input'] | ||
|
||
#### common settings | ||
Featopt = FeatureOptions().parse() | ||
Headopt = HeadposeOptions().parse() | ||
Renderopt = RenderOptions().parse() | ||
Featopt.load_epoch = config['model_params']['Audio2Mouth']['ckp_path'] | ||
Headopt.load_epoch = config['model_params']['Headpose']['ckp_path'] | ||
Renderopt.dataroot = config['dataset_params']['root'] | ||
Renderopt.load_epoch = config['model_params']['Image2Image']['ckp_path'] | ||
Renderopt.size = config['model_params']['Image2Image']['size'] | ||
|
||
############################# Load Models ################################# | ||
print('---------- Loading Model: APC-------------') | ||
APC_model = APC_encoder(config['model_params']['APC']['mel_dim'], | ||
config['model_params']['APC']['hidden_size'], | ||
config['model_params']['APC']['num_layers'], | ||
config['model_params']['APC']['residual']) | ||
# load all 5 here? | ||
APC_model.load_state_dict(torch.load(config['model_params']['APC']['ckp_path']), strict=False) | ||
APC_model.cuda() | ||
APC_model.eval() | ||
print('---------- Loading Model: {} -------------'.format(Featopt.task)) | ||
Audio2Feature = create_model(Featopt) | ||
Audio2Feature.setup(Featopt) | ||
Audio2Feature.eval() | ||
print('---------- Loading Model: {} -------------'.format(Headopt.task)) | ||
Audio2Headpose = create_model(Headopt) | ||
Audio2Headpose.setup(Headopt) | ||
Audio2Headpose.eval() | ||
if Headopt.feature_decoder == 'WaveNet': | ||
Headopt.A2H_receptive_field = Audio2Headpose.Audio2Headpose.module.WaveNet.receptive_field | ||
print('---------- Loading Model: {} -------------'.format(Renderopt.task)) | ||
facedataset = create_dataset(Renderopt) | ||
Feature2Face = create_model(Renderopt) | ||
Feature2Face.setup(Renderopt) | ||
Feature2Face.eval() | ||
visualizer = Visualizer(Renderopt) | ||
|
||
# check audio duration and trim audio | ||
extension_name = os.path.basename(opt.driving_audio).split('.')[-1] | ||
audio_threshold = 10 | ||
duration = librosa.get_duration(filename=opt.driving_audio) | ||
if duration > audio_threshold: | ||
print(f'audio file is longer than {audio_threshold} seconds, trimming the first {audio_threshold} seconds ' | ||
f'for further processing') | ||
ffmpeg_extract_subclip(opt.driving_audio, 0, audio_threshold, targetname=f'shorter_input.{extension_name}') | ||
opt.driving_audio = f'shorter_input.{extension_name}' | ||
|
||
# create the results folder | ||
audio_name = os.path.basename(opt.driving_audio).split('.')[0] | ||
save_root = join('results', opt.id, audio_name) | ||
os.makedirs(save_root, exist_ok=True) | ||
clean_folder(save_root) | ||
out_path = Path(tempfile.mkdtemp()) / "out.mp4" | ||
|
||
############################## Inference ################################## | ||
print('Processing audio: {} ...'.format(audio_name)) | ||
# read audio | ||
audio, _ = librosa.load(opt.driving_audio, sr=sr) | ||
total_frames = np.int32(audio.shape[0] / sr * FPS) | ||
|
||
#### 1. compute APC features | ||
print('1. Computing APC features...') | ||
mel80 = utils.compute_mel_one_sequence(audio) | ||
mel_nframe = mel80.shape[0] | ||
with torch.no_grad(): | ||
length = torch.Tensor([mel_nframe]) | ||
mel80_torch = torch.from_numpy(mel80.astype(np.float32)).cuda().unsqueeze(0) | ||
hidden_reps = APC_model.forward(mel80_torch, length)[0] # [mel_nframe, 512] | ||
hidden_reps = hidden_reps.cpu().numpy() | ||
audio_feats = hidden_reps | ||
|
||
#### 2. manifold projection | ||
if use_LLE: | ||
print('2. Manifold projection...') | ||
ind = utils.KNN_with_torch(audio_feats, APC_feat_database, K=Knear) | ||
weights, feat_fuse = utils.compute_LLE_projection_all_frame(audio_feats, APC_feat_database, ind, | ||
audio_feats.shape[0]) | ||
audio_feats = audio_feats * (1 - LLE_percent) + feat_fuse * LLE_percent | ||
|
||
#### 3. Audio2Mouth | ||
print('3. Audio2Mouth inference...') | ||
pred_Feat = Audio2Feature.generate_sequences(audio_feats, sr, FPS, fill_zero=True, opt=Featopt) | ||
|
||
#### 4. Audio2Headpose | ||
print('4. Headpose inference...') | ||
# set history headposes as zero | ||
pre_headpose = np.zeros(Headopt.A2H_wavenet_input_channels, np.float32) | ||
pred_Head = Audio2Headpose.generate_sequences(audio_feats, pre_headpose, fill_zero=True, sigma_scale=0.3, | ||
opt=Headopt) | ||
|
||
#### 5. Post-Processing | ||
print('5. Post-processing...') | ||
nframe = min(pred_Feat.shape[0], pred_Head.shape[0]) | ||
pred_pts3d = np.zeros([nframe, 73, 3]) | ||
pred_pts3d[:, mouth_indices] = pred_Feat.reshape(-1, 25, 3)[:nframe] | ||
|
||
## mouth | ||
pred_pts3d = utils.landmark_smooth_3d(pred_pts3d, Feat_smooth_sigma, area='only_mouth') | ||
pred_pts3d = utils.mouth_pts_AMP(pred_pts3d, True, AMP_method, Feat_AMPs) | ||
pred_pts3d = pred_pts3d + mean_pts3d | ||
pred_pts3d = utils.solve_intersect_mouth(pred_pts3d) # solve intersect lips if exist | ||
|
||
## headpose | ||
pred_Head[:, 0:3] *= rot_AMP | ||
pred_Head[:, 3:6] *= trans_AMP | ||
pred_headpose = utils.headpose_smooth(pred_Head[:, :6], Head_smooth_sigma).astype(np.float32) | ||
pred_headpose[:, 3:] += mean_translation | ||
pred_headpose[:, 0] += 180 | ||
|
||
## compute projected landmarks | ||
pred_landmarks = np.zeros([nframe, 73, 2], dtype=np.float32) | ||
final_pts3d = np.zeros([nframe, 73, 3], dtype=np.float32) | ||
final_pts3d[:] = std_mean_pts3d.copy() | ||
final_pts3d[:, 46:64] = pred_pts3d[:nframe, 46:64] | ||
for k in tqdm(range(nframe)): | ||
ind = k % candidate_eye_brow.shape[0] | ||
final_pts3d[k, eye_brow_indices] = candidate_eye_brow[ind] + mean_pts3d[eye_brow_indices] | ||
pred_landmarks[k], _, _ = utils.project_landmarks(camera_intrinsic, camera.relative_rotation, | ||
camera.relative_translation, scale, | ||
pred_headpose[k], final_pts3d[k]) | ||
|
||
## Upper Body Motion | ||
pred_shoulders = np.zeros([nframe, 18, 2], dtype=np.float32) | ||
pred_shoulders3D = np.zeros([nframe, 18, 3], dtype=np.float32) | ||
for k in range(nframe): | ||
diff_trans = pred_headpose[k][3:] - ref_trans | ||
pred_shoulders3D[k] = shoulder3D + diff_trans * shoulder_AMP | ||
# project | ||
project = camera_intrinsic.dot(pred_shoulders3D[k].T) | ||
project[:2, :] /= project[2, :] # divide z | ||
pred_shoulders[k] = project[:2, :].T | ||
|
||
#### 6. Image2Image translation & Save resuls | ||
print('6. Image2Image translation & Saving results...') | ||
for ind in tqdm(range(0, nframe), desc='Image2Image translation inference'): | ||
# feature_map: [input_nc, h, w] | ||
current_pred_feature_map = facedataset.dataset.get_data_test_mode(pred_landmarks[ind], | ||
pred_shoulders[ind], | ||
facedataset.dataset.image_pad) | ||
input_feature_maps = current_pred_feature_map.unsqueeze(0).cuda() | ||
pred_fake = Feature2Face.inference(input_feature_maps, img_candidates) | ||
# save results | ||
visual_list = [('pred', util.tensor2im(pred_fake[0]))] | ||
if save_feature_maps: | ||
visual_list += [('input', np.uint8(current_pred_feature_map[0].cpu().numpy() * 255))] | ||
visuals = OrderedDict(visual_list) | ||
visualizer.save_images(save_root, visuals, str(ind + 1)) | ||
|
||
## make videos | ||
# generate corresponding audio, reused for all results | ||
tmp_audio_path = join(save_root, 'tmp.wav') | ||
tmp_audio_clip = audio[: np.int32(nframe * sr / FPS)] | ||
librosa.output.write_wav(tmp_audio_path, tmp_audio_clip, sr) | ||
|
||
def write_video_with_audio(audio_path, output_path, prefix='pred_'): | ||
fps, fourcc = 60, cv2.VideoWriter_fourcc(*'DIVX') | ||
video_tmp_path = join(save_root, 'tmp.avi') | ||
out = cv2.VideoWriter(video_tmp_path, fourcc, fps, (Renderopt.loadSize, Renderopt.loadSize)) | ||
for j in tqdm(range(nframe), position=0, desc='writing video'): | ||
img = cv2.imread(join(save_root, prefix + str(j + 1) + '.jpg')) | ||
out.write(img) | ||
out.release() | ||
cmd = 'ffmpeg -i "' + video_tmp_path + '" -i "' + audio_path + '" -codec copy -shortest "' + output_path + '"' | ||
subprocess.call(cmd, shell=True) | ||
os.remove(video_tmp_path) # remove the template video | ||
|
||
temp_out = 'temp_video.avi' | ||
write_video_with_audio(tmp_audio_path, temp_out, 'pred_') | ||
# convert to mp4 | ||
cmd = ("ffmpeg -i " | ||
+ temp_out + " -strict -2 " | ||
+ str(out_path) | ||
) | ||
subprocess.call(cmd, shell=True) | ||
|
||
if os.path.exists(tmp_audio_path): | ||
os.remove(tmp_audio_path) | ||
if os.path.exists(temp_out): | ||
os.remove(temp_out) | ||
if os.path.exists(f'shorter_input.{extension_name}'): | ||
os.remove(f'shorter_input.{extension_name}') | ||
if not opt.save_intermediates: | ||
_img_paths = list(map(lambda x: str(x), list(Path(save_root).glob('*.jpg')))) | ||
for i in tqdm(range(len(_img_paths)), desc='deleting intermediate images'): | ||
os.remove(_img_paths[i]) | ||
|
||
print('Finish!') | ||
|
||
return out_path | ||
|
||
|
||
def clean_folder(folder): | ||
for filename in os.listdir(folder): | ||
file_path = os.path.join(folder, filename) | ||
try: | ||
if os.path.isfile(file_path) or os.path.islink(file_path): | ||
os.unlink(file_path) | ||
elif os.path.isdir(file_path): | ||
shutil.rmtree(file_path) | ||
except Exception as e: | ||
print('Failed to delete %s. Reason: %s' % (file_path, e)) |