Skip to content

Commit

Permalink
Merge pull request #17 from CJWBW/replicate
Browse files Browse the repository at this point in the history
Add Docker environment & web demo
  • Loading branch information
YuanxunLu authored Oct 14, 2021
2 parents 05a522a + 9d94c5b commit 84a6b9a
Show file tree
Hide file tree
Showing 3 changed files with 350 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ This repository contains the implementation of the following paper:

Figure 1. Given an arbitrary input audio stream, our system generates personalized and photorealistic talking-head animation in real-time. Right: May and Obama are driven by the same utterance but present different speaking characteristics.

<a href="https://replicate.ai/yuanxunlu/livespeechportraits"><img src="https://img.shields.io/static/v1?label=Replicate&message=Demo and Docker Image&color=blue"></a>


## Requirements
Expand Down
30 changes: 30 additions & 0 deletions cog.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
build:
gpu: true
python_version: "3.8"
system_packages:
- "libgl1-mesa-glx"
- "libglib2.0-0"
- "libsox-fmt-mp3"
python_packages:
- "torch==1.7.1"
- "torchvision==0.8.2"
- "numpy==1.18.1"
- "ipython==7.21.0"
- "Pillow==8.3.1"
- "scikit-image==0.18.3"
- "librosa==0.7.2"
- "tqdm==4.62.3"
- "scipy==1.7.1"
- "dominate==2.6.0"
- "albumentations==0.5.2"
- "beautifulsoup4==4.10.0"
- "sox==1.4.1"
- "h5py==3.4.0"
- "numba==0.48"
- "moviepy==1.0.3"
run:
- apt update -y && apt-get install ffmpeg -y
- apt-get install sox libsox-fmt-mp3 -y
- pip install opencv-python==4.1.2.30

predict: "predict.py:Predictor"
319 changes: 319 additions & 0 deletions predict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,319 @@
import os
import subprocess
from os.path import join
import yaml
import tempfile
import argparse
from pathlib import Path
from skimage.io import imread
import numpy as np
import librosa
from util import util
from tqdm import tqdm
import torch
from collections import OrderedDict
import cv2
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
import cog
import scipy.io as sio
import albumentations as A
from options.test_audio2feature_options import TestOptions as FeatureOptions
from options.test_audio2headpose_options import TestOptions as HeadposeOptions
from options.test_feature2face_options import TestOptions as RenderOptions
from datasets import create_dataset
from models import create_model
from models.networks import APC_encoder
from util.visualizer import Visualizer
from funcs import utils, audio_funcs
from demo import write_video_with_audio
import warnings

warnings.filterwarnings("ignore")


class Predictor(cog.Predictor):
def setup(self):
self.parser = argparse.ArgumentParser()
self.parser.add_argument('--id', default='May', help="person name, e.g. Obama1, Obama2, May, Nadella, McStay")
self.parser.add_argument('--driving_audio', default='data/Input/00083.wav', help="path to driving audio")
self.parser.add_argument('--save_intermediates', default=0, help="whether to save intermediate results")

@cog.input(
"driving_audio",
type=Path,
help="driving audio, if the file is more than 20 seconds, only the first 20 seconds will be processed for "
"video generation",
)
@cog.input(
"talking_head",
type=str,
options=['May', 'Obama1', 'Obama2', 'Nadella', 'McStay'],
default='May',
help="choose a talking head"
)
def predict(self, driving_audio, talking_head='May'):

############################### I/O Settings ##############################
# load config files
opt = self.parser.parse_args('')
opt.driving_audio = str(driving_audio)
opt.id = talking_head
with open(join('config', opt.id + '.yaml')) as f:
config = yaml.load(f)
data_root = join('data', opt.id)

############################ Hyper Parameters #############################
h, w, sr, FPS = 512, 512, 16000, 60
mouth_indices = np.concatenate([np.arange(4, 11), np.arange(46, 64)])
eye_brow_indices = [27, 65, 28, 68, 29, 67, 30, 66, 31, 72, 32, 69, 33, 70, 34, 71]
eye_brow_indices = np.array(eye_brow_indices, np.int32)

############################ Pre-defined Data #############################
mean_pts3d = np.load(join(data_root, 'mean_pts3d.npy'))
fit_data = np.load(config['dataset_params']['fit_data_path'])
pts3d = np.load(config['dataset_params']['pts3d_path']) - mean_pts3d
trans = fit_data['trans'][:, :, 0].astype(np.float32)
mean_translation = trans.mean(axis=0)
candidate_eye_brow = pts3d[10:, eye_brow_indices]
std_mean_pts3d = np.load(config['dataset_params']['pts3d_path']).mean(axis=0)
# candidates images
img_candidates = []
for j in range(4):
output = imread(join(data_root, 'candidates', f'normalized_full_{j}.jpg'))
output = A.pytorch.transforms.ToTensor(normalize={'mean': (0.5, 0.5, 0.5),
'std': (0.5, 0.5, 0.5)})(image=output)['image']
img_candidates.append(output)
img_candidates = torch.cat(img_candidates).unsqueeze(0).cuda()

# shoulders
shoulders = np.load(join(data_root, 'normalized_shoulder_points.npy'))
shoulder3D = np.load(join(data_root, 'shoulder_points3D.npy'))[1]
ref_trans = trans[1]

# camera matrix, we always use training set intrinsic parameters.
camera = utils.camera()
camera_intrinsic = np.load(join(data_root, 'camera_intrinsic.npy')).astype(np.float32)
APC_feat_database = np.load(join(data_root, 'APC_feature_base.npy'))

# load reconstruction data
scale = sio.loadmat(join(data_root, 'id_scale.mat'))['scale'][0, 0]
Audio2Mel_torch = audio_funcs.Audio2Mel(n_fft=512, hop_length=int(16000 / 120), win_length=int(16000 / 60),
sampling_rate=16000,
n_mel_channels=80, mel_fmin=90, mel_fmax=7600.0).cuda()

########################### Experiment Settings ###########################
#### user config
use_LLE = config['model_params']['APC']['use_LLE']
Knear = config['model_params']['APC']['Knear']
LLE_percent = config['model_params']['APC']['LLE_percent']
headpose_sigma = config['model_params']['Headpose']['sigma']
Feat_smooth_sigma = config['model_params']['Audio2Mouth']['smooth']
Head_smooth_sigma = config['model_params']['Headpose']['smooth']
Feat_center_smooth_sigma, Head_center_smooth_sigma = 0, 0
AMP_method = config['model_params']['Audio2Mouth']['AMP'][0]
Feat_AMPs = config['model_params']['Audio2Mouth']['AMP'][1:]
rot_AMP, trans_AMP = config['model_params']['Headpose']['AMP']
shoulder_AMP = config['model_params']['Headpose']['shoulder_AMP']
save_feature_maps = config['model_params']['Image2Image']['save_input']

#### common settings
Featopt = FeatureOptions().parse()
Headopt = HeadposeOptions().parse()
Renderopt = RenderOptions().parse()
Featopt.load_epoch = config['model_params']['Audio2Mouth']['ckp_path']
Headopt.load_epoch = config['model_params']['Headpose']['ckp_path']
Renderopt.dataroot = config['dataset_params']['root']
Renderopt.load_epoch = config['model_params']['Image2Image']['ckp_path']
Renderopt.size = config['model_params']['Image2Image']['size']

############################# Load Models #################################
print('---------- Loading Model: APC-------------')
APC_model = APC_encoder(config['model_params']['APC']['mel_dim'],
config['model_params']['APC']['hidden_size'],
config['model_params']['APC']['num_layers'],
config['model_params']['APC']['residual'])
# load all 5 here?
APC_model.load_state_dict(torch.load(config['model_params']['APC']['ckp_path']), strict=False)
APC_model.cuda()
APC_model.eval()
print('---------- Loading Model: {} -------------'.format(Featopt.task))
Audio2Feature = create_model(Featopt)
Audio2Feature.setup(Featopt)
Audio2Feature.eval()
print('---------- Loading Model: {} -------------'.format(Headopt.task))
Audio2Headpose = create_model(Headopt)
Audio2Headpose.setup(Headopt)
Audio2Headpose.eval()
if Headopt.feature_decoder == 'WaveNet':
Headopt.A2H_receptive_field = Audio2Headpose.Audio2Headpose.module.WaveNet.receptive_field
print('---------- Loading Model: {} -------------'.format(Renderopt.task))
facedataset = create_dataset(Renderopt)
Feature2Face = create_model(Renderopt)
Feature2Face.setup(Renderopt)
Feature2Face.eval()
visualizer = Visualizer(Renderopt)

# check audio duration and trim audio
extension_name = os.path.basename(opt.driving_audio).split('.')[-1]
audio_threshold = 10
duration = librosa.get_duration(filename=opt.driving_audio)
if duration > audio_threshold:
print(f'audio file is longer than {audio_threshold} seconds, trimming the first {audio_threshold} seconds '
f'for further processing')
ffmpeg_extract_subclip(opt.driving_audio, 0, audio_threshold, targetname=f'shorter_input.{extension_name}')
opt.driving_audio = f'shorter_input.{extension_name}'

# create the results folder
audio_name = os.path.basename(opt.driving_audio).split('.')[0]
save_root = join('results', opt.id, audio_name)
os.makedirs(save_root, exist_ok=True)
clean_folder(save_root)
out_path = Path(tempfile.mkdtemp()) / "out.mp4"

############################## Inference ##################################
print('Processing audio: {} ...'.format(audio_name))
# read audio
audio, _ = librosa.load(opt.driving_audio, sr=sr)
total_frames = np.int32(audio.shape[0] / sr * FPS)

#### 1. compute APC features
print('1. Computing APC features...')
mel80 = utils.compute_mel_one_sequence(audio)
mel_nframe = mel80.shape[0]
with torch.no_grad():
length = torch.Tensor([mel_nframe])
mel80_torch = torch.from_numpy(mel80.astype(np.float32)).cuda().unsqueeze(0)
hidden_reps = APC_model.forward(mel80_torch, length)[0] # [mel_nframe, 512]
hidden_reps = hidden_reps.cpu().numpy()
audio_feats = hidden_reps

#### 2. manifold projection
if use_LLE:
print('2. Manifold projection...')
ind = utils.KNN_with_torch(audio_feats, APC_feat_database, K=Knear)
weights, feat_fuse = utils.compute_LLE_projection_all_frame(audio_feats, APC_feat_database, ind,
audio_feats.shape[0])
audio_feats = audio_feats * (1 - LLE_percent) + feat_fuse * LLE_percent

#### 3. Audio2Mouth
print('3. Audio2Mouth inference...')
pred_Feat = Audio2Feature.generate_sequences(audio_feats, sr, FPS, fill_zero=True, opt=Featopt)

#### 4. Audio2Headpose
print('4. Headpose inference...')
# set history headposes as zero
pre_headpose = np.zeros(Headopt.A2H_wavenet_input_channels, np.float32)
pred_Head = Audio2Headpose.generate_sequences(audio_feats, pre_headpose, fill_zero=True, sigma_scale=0.3,
opt=Headopt)

#### 5. Post-Processing
print('5. Post-processing...')
nframe = min(pred_Feat.shape[0], pred_Head.shape[0])
pred_pts3d = np.zeros([nframe, 73, 3])
pred_pts3d[:, mouth_indices] = pred_Feat.reshape(-1, 25, 3)[:nframe]

## mouth
pred_pts3d = utils.landmark_smooth_3d(pred_pts3d, Feat_smooth_sigma, area='only_mouth')
pred_pts3d = utils.mouth_pts_AMP(pred_pts3d, True, AMP_method, Feat_AMPs)
pred_pts3d = pred_pts3d + mean_pts3d
pred_pts3d = utils.solve_intersect_mouth(pred_pts3d) # solve intersect lips if exist

## headpose
pred_Head[:, 0:3] *= rot_AMP
pred_Head[:, 3:6] *= trans_AMP
pred_headpose = utils.headpose_smooth(pred_Head[:, :6], Head_smooth_sigma).astype(np.float32)
pred_headpose[:, 3:] += mean_translation
pred_headpose[:, 0] += 180

## compute projected landmarks
pred_landmarks = np.zeros([nframe, 73, 2], dtype=np.float32)
final_pts3d = np.zeros([nframe, 73, 3], dtype=np.float32)
final_pts3d[:] = std_mean_pts3d.copy()
final_pts3d[:, 46:64] = pred_pts3d[:nframe, 46:64]
for k in tqdm(range(nframe)):
ind = k % candidate_eye_brow.shape[0]
final_pts3d[k, eye_brow_indices] = candidate_eye_brow[ind] + mean_pts3d[eye_brow_indices]
pred_landmarks[k], _, _ = utils.project_landmarks(camera_intrinsic, camera.relative_rotation,
camera.relative_translation, scale,
pred_headpose[k], final_pts3d[k])

## Upper Body Motion
pred_shoulders = np.zeros([nframe, 18, 2], dtype=np.float32)
pred_shoulders3D = np.zeros([nframe, 18, 3], dtype=np.float32)
for k in range(nframe):
diff_trans = pred_headpose[k][3:] - ref_trans
pred_shoulders3D[k] = shoulder3D + diff_trans * shoulder_AMP
# project
project = camera_intrinsic.dot(pred_shoulders3D[k].T)
project[:2, :] /= project[2, :] # divide z
pred_shoulders[k] = project[:2, :].T

#### 6. Image2Image translation & Save resuls
print('6. Image2Image translation & Saving results...')
for ind in tqdm(range(0, nframe), desc='Image2Image translation inference'):
# feature_map: [input_nc, h, w]
current_pred_feature_map = facedataset.dataset.get_data_test_mode(pred_landmarks[ind],
pred_shoulders[ind],
facedataset.dataset.image_pad)
input_feature_maps = current_pred_feature_map.unsqueeze(0).cuda()
pred_fake = Feature2Face.inference(input_feature_maps, img_candidates)
# save results
visual_list = [('pred', util.tensor2im(pred_fake[0]))]
if save_feature_maps:
visual_list += [('input', np.uint8(current_pred_feature_map[0].cpu().numpy() * 255))]
visuals = OrderedDict(visual_list)
visualizer.save_images(save_root, visuals, str(ind + 1))

## make videos
# generate corresponding audio, reused for all results
tmp_audio_path = join(save_root, 'tmp.wav')
tmp_audio_clip = audio[: np.int32(nframe * sr / FPS)]
librosa.output.write_wav(tmp_audio_path, tmp_audio_clip, sr)

def write_video_with_audio(audio_path, output_path, prefix='pred_'):
fps, fourcc = 60, cv2.VideoWriter_fourcc(*'DIVX')
video_tmp_path = join(save_root, 'tmp.avi')
out = cv2.VideoWriter(video_tmp_path, fourcc, fps, (Renderopt.loadSize, Renderopt.loadSize))
for j in tqdm(range(nframe), position=0, desc='writing video'):
img = cv2.imread(join(save_root, prefix + str(j + 1) + '.jpg'))
out.write(img)
out.release()
cmd = 'ffmpeg -i "' + video_tmp_path + '" -i "' + audio_path + '" -codec copy -shortest "' + output_path + '"'
subprocess.call(cmd, shell=True)
os.remove(video_tmp_path) # remove the template video

temp_out = 'temp_video.avi'
write_video_with_audio(tmp_audio_path, temp_out, 'pred_')
# convert to mp4
cmd = ("ffmpeg -i "
+ temp_out + " -strict -2 "
+ str(out_path)
)
subprocess.call(cmd, shell=True)

if os.path.exists(tmp_audio_path):
os.remove(tmp_audio_path)
if os.path.exists(temp_out):
os.remove(temp_out)
if os.path.exists(f'shorter_input.{extension_name}'):
os.remove(f'shorter_input.{extension_name}')
if not opt.save_intermediates:
_img_paths = list(map(lambda x: str(x), list(Path(save_root).glob('*.jpg'))))
for i in tqdm(range(len(_img_paths)), desc='deleting intermediate images'):
os.remove(_img_paths[i])

print('Finish!')

return out_path


def clean_folder(folder):
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))

0 comments on commit 84a6b9a

Please sign in to comment.