-
Notifications
You must be signed in to change notification settings - Fork 215
/
Copy pathaudio_funcs.py
437 lines (362 loc) · 15.2 KB
/
audio_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import os
import os.path
import math
# import sox
#import pyworld as pw
import torch
import torch.utils.data
import numpy as np
import librosa
"""
useage
fft = Audio2Mel().cuda()
# audio shape is B x 1 x T, the normalized mel shape is B x D x T
mel = fft(audio)
"""
from librosa.filters import mel as librosa_mel_fn
import torch.nn.functional as F
class Audio2Mel(torch.nn.Module):
def __init__(
self,
n_fft=512,
hop_length=256,
win_length=1024,
sampling_rate=16000,
n_mel_channels=80,
mel_fmin=90,
mel_fmax=7600.0,
):
super(Audio2Mel, self).__init__()
##############################################
# FFT Parameters #
##############################################
window = torch.hann_window(win_length).float()
mel_basis = librosa_mel_fn(
sampling_rate, n_fft, n_mel_channels, mel_fmin, mel_fmax
)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
self.register_buffer("window", window)
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.sampling_rate = sampling_rate
self.n_mel_channels = n_mel_channels
self.min_mel = math.log(1e-5)
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
"""
input audio signal (-1,1): B x 1 x T
output mel signal: B x D x T', T' is a reduction of T
"""
def forward(self, audio, normalize=True):
p = (self.n_fft - self.hop_length) // 2
audio = F.pad(audio, (p, p), "reflect").squeeze(1)
fft = torch.stft(
audio,
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=self.window,
center=False,
)
real_part, imag_part = fft.unbind(-1)
magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2)
mel_output = torch.matmul(self.mel_basis, magnitude)
log_mel_spec = torch.log(torch.clamp(mel_output, min=1e-5))
# normalize to the range [0,1]
if normalize:
log_mel_spec = (log_mel_spec - self.min_mel) / -self.min_mel
return log_mel_spec
def mel_to_audio(self, mel):
mel = torch.exp(mel * (-self.min_mel) + self.min_mel) ** 2
mel_np = mel.cpu().numpy()
audio = librosa.feature.inverse.mel_to_audio(mel_np, sr=self.sampling_rate, n_fft=self.n_fft,
hop_length=self.hop_length, win_length=self.win_length,
window='hann', center=False,
pad_mode='reflect', power=2.0, n_iter=32, fmin=self.mel_fmin,
fmax=self.mel_fmax)
return audio
"""
here we will get per frame energy to replace mc0 in the corresponding prosody representation
the audio is already in the gpu card for accerelate the computation speed
input audio signal: B x 1 x T
output energy: B x 1 x T'
"""
def get_energy(self, audio, normalize=True):
# B x 1 x T
p = (self.n_fft - self.hop_length) // 2
audio_new = F.pad(audio, (p, p), "reflect").squeeze(1)
# audio_new = audio.squeeze(1)
audio_fold = audio_new.unfold(1, self.win_length, self.hop_length)
audio_energy = torch.sqrt(torch.mean(audio_fold ** 2, dim=-1))
audio_energy = torch.log(torch.clamp(audio_energy, min=1e-5))
if normalize:
audio_energy = (audio_energy - self.min_mel) / -self.min_mel
return audio_energy
# we can get the energy of mels here, B*D*T
def get_energy_mel(self, mels, normalize=True):
m = mels.exp().mean(dim=1)
audio_energy = torch.log(m)
# audio_energy = torch.log(torch.clamp(m,min=1e-5))
# if normalize:
# audio_energy = (audio_energy - self.min_mel) / -self.min_mel
return audio_energy
def mu_law_encoding(data, mu=255):
'''encode the original audio via mu-law companding and mu-bits quantization
'''
# mu-law companding
mu_x = np.sign(data) * np.log(1 + mu * np.abs(data)) / np.log(mu + 1)
# mu-bits quantization from [-1, 1] to [0, mu]
mu_x = (mu_x + 1) / 2 * mu + 0.5
return mu_x.astype(np.int32)
#%timeit mu_x = mu_law_encoding(x, 255) 305 µs ± 554 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
def mu_law_decoding(data, mu=255):
'''inverse the mu-law compressed and quantized data.
'''
# dequantization
y = 2 * (data.astype(np.float32) / mu) - 1
# inverse mu-law companding
x = np.sign(y) * (1.0 / mu) * ((1.0 + mu)**abs(y) - 1.0)
return x
## audio augmentation
def inject_gaussian_noise(data, noise_factor, use_torch=False):
''' inject random gaussian noise (mean=0, std=1) to audio clip
In my test, a reasonable factor region could be [0, 0.01]
larger will be too large and smaller could be ignored.
Args:
data: [n,] original audio sequence
noise_factor(float): scaled factor
use_torch(bool): optional, if use_torch=True, input data and implementation will
be torch methods.
Returns:
augmented_data: [n,] noised audio clip
'''
if use_torch == False:
augmented_data = data + noise_factor * np.random.normal(0, 1, len(data))
# Cast back to same data type
augmented_data = augmented_data.astype(type(data[0]))
# use torch
else:
augmented_data = data + noise_factor * torch.randn(1).cuda()
return augmented_data
# pitch shifting
def pitch_shifting(data, sampling_rate=48000, factor=5):
''' shift the audio pitch.
'''
# Permissible factor values = -5 <= x <= 5
pitch_factor = np.random.rand(1) * 2 * factor - factor
return librosa.effects.pitch_shift(data, sampling_rate, pitch_factor)
def speed_change(data, landmark=None):
''' change the speed of input audio. Note that we return the speed_rate to
change the speed of landmarks or videos.
Args:
data: [n,] audio clip
landmark: [m, pts, 2] aligned landmarks with audio if existed.
'''
# Permissible factor values = 0.7 <= x <= 1.3 (higher is faster)
# resulted audio length: np.round(n/rate)
speed_rate = np.random.uniform(0.7, 1.3)
# only augment audio
if landmark == None:
return librosa.effects.time_stretch(data, speed_rate), speed_rate
else:
# n_after = np.round(data.shape[0]/speed_rate)
pass
def world_augment(wav, sr, op):
f0, sp, ap = pw.wav2world(wav.astype(np.float64), sr)
op = op if op is not None else np.random.randint(0,4)
if op == 0:
base_f0 = np.random.randint(100,300)
# base_f0 = np.random.randint(100, 200)
robot_like_f0 = np.ones_like(f0) * base_f0 # 100是个适当的数字
robot_like = pw.synthesize(robot_like_f0, sp, ap, sr)
out_wav = robot_like
elif op == 1:
ratio = 1 + np.random.rand()
female_like_sp = np.zeros_like(sp)
for f in range(female_like_sp.shape[1]):
female_like_sp[:, f] = sp[:, int(f/ratio)]
ratio_f = 0.65 + 1.4 * np.random.rand()
out_wav = pw.synthesize(f0*ratio_f, female_like_sp, ap, sr)
elif op == 2:
# change the current pitch here
ratio = 0.65 + 1.4 * np.random.rand()
out_wav = pw.synthesize(f0*ratio, sp, ap, sr)
elif op == 3:
# the random masking using the time axis
mask_len = np.random.randint(0,256 * 4)
mask_pos = np.random.randint(0, wav.shape[0] - mask_len + 1)
out_wav = np.copy(wav)
out_wav[mask_pos:mask_pos+mask_len] = 0
else:
out_wav = np.copy(wav)
return out_wav.astype(np.float32)
def sox_augment(wav, sr, tempo_ratio=1.0, op=None):
aug_choice = op if op is not None else np.random.randint(low=1, high=8)
# tempo_ratio = 1.0
hop_length = 256
tfm = sox.Transformer()
if aug_choice == 1:
# 1 pitch aug
param = np.random.uniform(-5.0, 5.0)
tfm.pitch(param)
elif aug_choice == 2:
# 2 tempo aug, when tempo_ratio is around 1.0, no tempo aug
# tempo_ratio = np.random.uniform(0.5, 2.0)
# if tempo_ratio >= 0.9 and tempo_ratio <= 1.1:
# tempo_ratio = 1.0
# if tempo_ratio != 1.0:
# tfm.tempo(tempo_ratio, 's', quick=False)
pass
elif aug_choice == 3:
# 3 gain aug
param = np.random.uniform(-20, 5)
tfm.norm()
tfm.gain(param)
elif aug_choice == 4:
# 4 echo aug
# delays = np.random.uniform(5, 60)
# decays = np.random.uniform(0.2, 0.6)
# tfm.echo(delays=[delays], decays=[decays])
pass
elif aug_choice == 5:
# 5 reverb aug
param = np.random.uniform(0, 100, size=(4,))
tfm.reverb(param[0], param[1], param[2], param[3])
elif aug_choice == 6:
# 6 bandreject aug
param1 = np.random.randint(200, 7500)
param2 = np.random.uniform(1.0, 4.0)
tfm.bandreject(param1, param2)
elif aug_choice == 7:
# 8 equalizer aug
param1 = np.random.randint(200, 7500)
param2 = np.random.uniform(1.0, 4.0)
param3 = np.random.uniform(-20, 5)
tfm.equalizer(param1, param2, param3)
else:
raise RuntimeError('Aug choice error!')
wave_length = wav.shape[0]
if aug_choice == 1:# When using pitch augmentation, pad silence to keep audio length
wav = np.concatenate((wav, np.array([0.0]*(hop_length * 2))), axis=0)
aug_wave_data = tfm.build_array(input_array=wav, sample_rate_in=sr)
if aug_choice == 1:# Keep audio length unchanged when using pitch augmentation
aug_wave_data = aug_wave_data[:wave_length]
return aug_wave_data
def sox_augment_v2(wav, sr, op=None):
aug_choice = op if op is not None else np.random.randint(low=1, high=5)
hop_length = 256
tfm = sox.Transformer()
if aug_choice == 1:
# 1 pitch aug
param = np.random.uniform(-5.0, 5.0)
tfm.pitch(param)
elif aug_choice == 2:
# 5 reverb aug
param = np.random.uniform(0, 100, size=(4,))
tfm.reverb(param[0], param[1], param[2], param[3])
elif aug_choice == 3:
# 6 bandreject aug
param1 = np.random.randint(200, 7500)
param2 = np.random.uniform(1.0, 4.0)
tfm.bandreject(param1, param2)
elif aug_choice == 4:
# 8 equalizer aug
param1 = np.random.randint(200, 7500)
param2 = np.random.uniform(1.0, 4.0)
param3 = np.random.uniform(-20, 5)
tfm.equalizer(param1, param2, param3)
else:
raise RuntimeError('Aug choice error!')
wave_length = wav.shape[0]
if aug_choice == 1:# When using pitch augmentation, pad silence to keep audio length
wav = np.concatenate((wav, np.array([0.0]*(hop_length * 2))), axis=0)
aug_wave_data = tfm.build_array(input_array=wav, sample_rate_in=sr)
if aug_choice == 1:# Keep audio length unchanged when using pitch augmentation
aug_wave_data = aug_wave_data[:wave_length]
return aug_wave_data
def audio_output_augment(wav, sr, op=None):
aug_choice = op if op is not None else np.random.randint(low=1, high=4)
tfm = sox.Transformer()
if aug_choice == 1:
# 5 reverb aug
param = np.random.uniform(0, 100, size=(4,))
tfm.reverb(param[0], param[1], param[2], param[3])
elif aug_choice == 2:
# 6 bandreject aug
param1 = np.random.randint(200, 7500)
param2 = np.random.uniform(1.0, 4.0)
tfm.bandreject(param1, param2)
elif aug_choice == 3:
# 8 equalizer aug
param1 = np.random.randint(200, 7500)
param2 = np.random.uniform(1.0, 4.0)
param3 = np.random.uniform(-20, 5)
tfm.equalizer(param1, param2, param3)
else:
raise RuntimeError('Aug choice error!')
aug_wave_data = tfm.build_array(input_array=wav, sample_rate_in=sr)
return aug_wave_data
def audio_time_augment(wav, sr, time_scale):
tfm = sox.Transformer()
tfm.tempo(time_scale, 's', quick=False)
aug_wave_data = tfm.build_array(input_array=wav, sample_rate_in=sr)
return aug_wave_data
def prepare_noises(scp_file, root=None, sampline_rate=None, ignore_class=None):
noises = []
print('Loading augmentation noises...')
with open(scp_file,'r') as fp:
for line in fp.readlines():
line = line.rstrip('\n')
if ignore_class is not None and ignore_class in line:
continue
noise, sr = librosa.load(os.path.join(root, line), sr=sampline_rate)
noises.append(noise)
print('Augmentation noises loaded!')
return noises, sr
def add_gauss_noise(wav, noise_std=0.03, max_wav_value=1.0):
if isinstance(wav, np.ndarray):
wav = torch.tensor(wav.copy())
real_std = np.random.random() * noise_std
wav_new = wav.float() / max_wav_value + torch.randn(wav.size()) * real_std
wav_new = wav_new * max_wav_value
wav_new = wav_new.clamp_(-max_wav_value, max_wav_value)
return wav_new.float().numpy()
def add_background_noise(wav, noises, min_snr=2, max_snr=15):
def mix_noise(wav, noise, scale):
x = wav + scale * noise
x = x.clip(-1, 1)
return x
def voice_energy(wav):
wav_float = np.copy(wav)
return np.sum(wav_float ** 2) / (wav_float.shape[0] + 1e-5)
def voice_energy_ratio(wav, noise, target_snr):
wav_eng = voice_energy(wav)
noise_eng = voice_energy(noise)
target_noise_eng = wav_eng / (10 ** (target_snr / 10.0))
ratio = target_noise_eng / (noise_eng + 1e-5)
return ratio
total_id = len(noises)
# 0 is no need to generate the noise
idx = np.random.choice(range(0, total_id))
noise_wav = noises[idx]
if noise_wav.shape[0] > wav.shape[0]:
sel_range_id = np.random.choice(range(0, noise_wav.shape[0] - wav.shape[0]))
n = noise_wav[sel_range_id:sel_range_id + wav.shape[0]]
else:
n = np.zeros(wav.shape[0])
sel_range_id = np.random.choice(range(0, wav.shape[0] - noise_wav.shape[0] + 1))
n[sel_range_id:sel_range_id + noise_wav.shape[0]] = noise_wav
#
target_snr = np.random.random() * (max_snr - min_snr) + min_snr
scale = voice_energy_ratio(wav, n, target_snr)
wav_new = mix_noise(wav, n, scale)
return wav_new
def noise_augment(wav, wav_noises, gaussian_prob=0.5):
if np.random.random() > gaussian_prob:# add gauss noise
noise_std = np.random.uniform(low=0.001, high=0.02)
aug_wave_data = add_gauss_noise(wav, noise_std=noise_std)
else:# add background noise
aug_wave_data = add_background_noise(wav, wav_noises, min_snr=2, max_snr=15)
return aug_wave_data