MiniGPT-v2: Large Language Model as a Unified Interface for Vision-Language Multi-task Learning
Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Krishnamoorthi, Vikas Chandra, Yunyang Xiong☨, Mohamed Elhoseiny☨
☨equal last author
MiniGPT-4: Enhancing Vision-language Understanding with Advanced Large Language Models
Deyao Zhu*, Jun Chen*, Xiaoqian Shen, Xiang Li, Mohamed Elhoseiny
*equal contribution
King Abdullah University of Science and Technology
[Oct.13 2023] Breaking! We release the first major update with our MiniGPT-v2
[Aug.28 2023] We now provide a llama 2 version of MiniGPT-4
Click the image to chat with MiniGPT-v2 around your images
Click the image to chat with MiniGPT-4 around your images
More examples can be found in the project page.
1. Prepare the code and the environment
Git clone our repository, creating a python environment and activate it via the following command
git clone https://github.com/Vision-CAIR/MiniGPT-4.git
cd MiniGPT-4
conda env create -f environment.yml
conda activate minigpt4
2. Prepare the pretrained LLM weights
MiniGPT-v2 is based on Llama2 Chat 7B. For MiniGPT-4, we have both Vicuna V0 and Llama 2 version. Download the corresponding LLM weights from the following huggingface space via clone the repository using git-lfs.
Llama 2 Chat 7B | Vicuna V0 13B | Vicuna V0 7B |
---|---|---|
Download | Downlad | Download |
Then, set the variable llama_model in the model config file to the LLM weight path.
-
For MiniGPT-v2, set the LLM path here at Line 14.
-
For MiniGPT-4 (Llama2), set the LLM path here at Line 15.
-
For MiniGPT-4 (Vicuna), set the LLM path here at Line 18
3. Prepare the pretrained model checkpoints
Download the pretrained model checkpoints
MiniGPT-v2 (LLaMA-2 Chat 7B) |
---|
Download |
For MiniGPT-v2, set the path to the pretrained checkpoint in the evaluation config file in eval_configs/minigptv2_eval.yaml at Line 8.
MiniGPT-4 (Vicuna 13B) | MiniGPT-4 (Vicuna 7B) | MiniGPT-4 (LLaMA-2 Chat 7B) |
---|---|---|
Download | Download | Download |
For MiniGPT-4, set the path to the pretrained checkpoint in the evaluation config file in eval_configs/minigpt4_eval.yaml at Line 8 for Vicuna version or eval_configs/minigpt4_llama2_eval.yaml for LLama2 version.
For MiniGPT-v2, run
python demo_v2.py --cfg-path eval_configs/minigptv2_eval.yaml --gpu-id 3
For MiniGPT-4 (Vicuna version), run
python demo.py --cfg-path eval_configs/minigpt4_eval.yaml --gpu-id 0
For MiniGPT-4 (Llama2 version), run
python demo.py --cfg-path eval_configs/minigpt4_llama2_eval.yaml --gpu-id 0
To save GPU memory, LLMs loads as 8 bit by default, with a beam search width of 1.
This configuration requires about 23G GPU memory for 13B LLM and 11.5G GPU memory for 7B LLM.
For more powerful GPUs, you can run the model
in 16 bit by setting low_resource
to False
in the relevant config file:
- MiniGPT-v2: minigptv2_eval.yaml
- MiniGPT-4 (Llama2): minigpt4_llama2_eval.yaml
- MiniGPT-4 (Vicuna): minigpt4_eval.yaml
Thanks @WangRongsheng, you can also run MiniGPT-4 on Colab
For training details of MiniGPT-4, check here.
- BLIP2 The model architecture of MiniGPT-4 follows BLIP-2. Don't forget to check this great open-source work if you don't know it before!
- Lavis This repository is built upon Lavis!
- Vicuna The fantastic language ability of Vicuna with only 13B parameters is just amazing. And it is open-source!
- LLaMA The strong open-sourced LLaMA 2 language model.
If you're using MiniGPT-4/MiniGPT-v2 in your research or applications, please cite using this BibTeX:
@article{Chen2023minigpt,
title={MiniGPT-v2: Large Language Model as a Unified Interface for Vision-Language Multi-task Learning},
author={Chen, Jun and Zhu, Deyao and Shen, Xiaoqian and Li, Xiang and Liu, Zechu and Zhang, Pengchuan and Krishnamoorthi, Raghuraman and Chandra, Vikas and Xiong, Yunyang and Elhoseiny, Mohamed},
journal={github},
year={2023}
}
@article{zhu2023minigpt,
title={MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models},
author={Zhu, Deyao and Chen, Jun and Shen, Xiaoqian and Li, Xiang and Elhoseiny, Mohamed},
journal={arXiv preprint arXiv:2304.10592},
year={2023}
}
This repository is under BSD 3-Clause License. Many codes are based on Lavis with BSD 3-Clause License here.