DeepDiff: Deep-learning for predicting Differential gene expression from histone modifications
@article{ArDeepDiff18,
author = {Sekhon, Arshdeep and Singh, Ritambhara and Qi, Yanjun},
title = {DeepDiff: DEEP-learning for predicting DIFFerential gene expression from histone modifications},
journal = {Bioinformatics},
volume = {34},
number = {17},
pages = {i891-i900},
year = {2018},
doi = {10.1093/bioinformatics/bty612},
URL = {http://dx.doi.org/10.1093/bioinformatics/bty612},
eprint = {/oup/backfile/content_public/journal/bioinformatics/34/17/10.1093_bioinformatics_bty612/2/bty612.pdf}
}
To train, validate and test the model for celltypes "Cell1" and "Cell2":
python train.py --cell_1=Cell1 --cell_2=Cell2 --model_name=raw_d --epochs=120 --lr=0.0001 --data_root=data/ --save_root=Results/
-
To specify DeepDiff variation:
--model_name=
raw_d: difference of HMs
raw_c: concatenation of HMs
raw: raw features- difference and concatenation of HMs
raw_aux: raw features and auxiliary Cell type specific prediction features
aux: auxiliary Cell type specific prediction features
aux_siamese: auxiliary Cell type specific prediction features with siamese auxiliary
raw_aux_siamese: raw features and auxiliary Cell type specific prediction features with siamese auxiliary -
To save attention maps:
use option --save_attention_maps : saves Level II attention values in .txt file -
To change rnn size:
--bin_rnn_size=32
To only test on a saved model:
python train.py --test_on_saved_model --model_name=raw_d --data_root=data/ --save_root=Results/