forked from iskandr/fancyimpute
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
71 lines (63 loc) · 2.33 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import logging
import re
from setuptools import setup
package_name = "fancyimpute"
readme_dir = os.path.dirname(__file__)
readme_filename = os.path.join(readme_dir, 'README.md')
try:
with open(readme_filename, 'r') as f:
readme_markdown = f.read()
except:
logging.warn("Failed to load %s" % readme_filename)
readme_markdown = ""
with open('%s/__init__.py' % package_name, 'r') as f:
version = re.search(
r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]',
f.read(),
re.MULTILINE).group(1)
if __name__ == '__main__':
setup(
name=package_name,
version=version,
description="Matrix completion and feature imputation algorithms",
author="Alex Rubinsteyn, Sergey Feldman",
author_email="alex.rubinsteyn@gmail.com",
url="https://github.com/iskandr/%s" % package_name,
license="http://www.apache.org/licenses/LICENSE-2.0.html",
classifiers=[
'Development Status :: 4 - Beta',
'Environment :: Console',
'Operating System :: OS Independent',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python',
'Topic :: Scientific/Engineering :: Bio-Informatics',
],
install_requires=[
'knnimpute',
# need at least 1.10 for np.multi_dot
'numpy>=1.10',
'scipy',
# used by NuclearNormMinimization
'cvxpy>=1.0.6',
'scikit-learn>=0.21.2',
# used by MatrixFactorization
'keras>=2.0.0',
'tensorflow',
],
long_description=readme_markdown,
long_description_content_type='text/markdown',
packages=[package_name],
)