Skip to content

Feature-Enhanced Neural Collaborative Reasoning for Explainable Recommendation (TOIS)

Notifications You must be signed in to change notification settings

Xiaoyu-SZ/FencrCode

Repository files navigation

FencrCode

Welcome to the GitHub repository for FENCR. This repository contains all the necessary code and instructions to run and evaluate FENCR.

Installation

To run FENCR, you'll need to have Python 3.7+ installed. Follow these steps to set up the environment:

  1. Clone the repository: git clone git@github.com:Xiaoyu-SZ/FencrCode.git
  2. Navigate to the repository directory: cd FENCR
  3. Install the required packages: pip install -r requirements.txt

Running FENCR

To run FENCR, you'll need to have a dataset prepared in the correct format. The code for preprocessing datasets are in the preprocess/ folder. We also provide preprocessed data to download. Follow these steps to run FENCR:

  1. Download the preprocessed dataset (https://drive.google.com/drive/folders/1ITEC4ZC2UtCt1g_oEC9rh_BGKFoSM_wW?usp=sharing) and place it in the dataset/ folder.
  2. You can run the model as follows:
'python main.py --model_name FENCR --val_metrics ndcg@10 --test_metrics ndcg@5.10.20,hit@10,recall@10.20,precision@10 --eval_batch_size 8 --latent_dim 1 --bucket_size 0 --dataset taobao-1-1 --l2 1e-06 --lr 0.001 --es_patience 20 --output_strategy adaptive_sigmoid_ui --r_logic 1e-06 --loss_sum 1 --adaptive_loss 1 --layers [16] --batch_size 128 --test_sample_n 1000 --val_sample_n 1000'

'python main.py --model_name FENCR --val_metrics ndcg@10 --test_metrics ndcg@5.10.20,hit@10,recall@10.20,precision@10 --eval_batch_size 8 --latent_dim 1 --bucket_size 0 --dataset recsys2017-1-1 --l2 1e-06 --lr 0.001 --es_patience 20 --output_strategy adaptive_sigmoid_ui --loss_sum 1 --adaptive_loss 1 --layers [16] --batch_size 128 --test_sample_n 1000 --val_sample_n 1000 --r_logic 1e-08 --random_seed 1949'

About

Feature-Enhanced Neural Collaborative Reasoning for Explainable Recommendation (TOIS)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages