forked from NVlabs/NVAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
479 lines (392 loc) · 16.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# ---------------------------------------------------------------
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for NVAE. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import logging
import os
import shutil
import time
from datetime import timedelta
import sys
import torch
import torch.nn as nn
import numpy as np
import torch.distributed as dist
import torch.nn.functional as F
from tensorboardX import SummaryWriter
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
class ExpMovingAvgrageMeter(object):
def __init__(self, momentum=0.9):
self.momentum = momentum
self.reset()
def reset(self):
self.avg = 0
def update(self, val):
self.avg = (1. - self.momentum) * self.avg + self.momentum * val
class DummyDDP(nn.Module):
def __init__(self, model):
super(DummyDDP, self).__init__()
self.module = model
def forward(self, *input, **kwargs):
return self.module(*input, **kwargs)
def count_parameters_in_M(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name)/1e6
def save_checkpoint(state, is_best, save):
filename = os.path.join(save, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def save(model, model_path):
torch.save(model.state_dict(), model_path)
def load(model, model_path):
model.load_state_dict(torch.load(model_path))
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
if not os.path.exists(os.path.join(path, 'scripts')):
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
class Logger(object):
def __init__(self, rank, save):
self.rank = rank
if self.rank == 0:
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
self.start_time = time.time()
def info(self, string, *args):
if self.rank == 0:
elapsed_time = time.time() - self.start_time
elapsed_time = time.strftime(
'(Elapsed: %H:%M:%S) ', time.gmtime(elapsed_time))
if isinstance(string, str):
string = elapsed_time + string
else:
logging.info(elapsed_time)
logging.info(string, *args)
class Writer(object):
def __init__(self, rank, save):
self.rank = rank
if self.rank == 0:
self.writer = SummaryWriter(log_dir=save, flush_secs=20)
def add_scalar(self, *args, **kwargs):
if self.rank == 0:
self.writer.add_scalar(*args, **kwargs)
def add_figure(self, *args, **kwargs):
if self.rank == 0:
self.writer.add_figure(*args, **kwargs)
def add_image(self, *args, **kwargs):
if self.rank == 0:
self.writer.add_image(*args, **kwargs)
def add_histogram(self, *args, **kwargs):
if self.rank == 0:
self.writer.add_histogram(*args, **kwargs)
def add_histogram_if(self, write, *args, **kwargs):
if write and False: # Used for debugging.
self.add_histogram(*args, **kwargs)
def close(self, *args, **kwargs):
if self.rank == 0:
self.writer.close()
def reduce_tensor(tensor, world_size):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= world_size
return rt
def get_stride_for_cell_type(cell_type):
if cell_type.startswith('normal') or cell_type.startswith('combiner'):
stride = 1
elif cell_type.startswith('down'):
stride = 2
elif cell_type.startswith('up'):
stride = -1
else:
raise NotImplementedError(cell_type)
return stride
def get_cout(cin, stride):
if stride == 1:
cout = cin
elif stride == -1:
cout = cin // 2
elif stride == 2:
cout = 2 * cin
return cout
def kl_balancer_coeff(num_scales, groups_per_scale, fun):
if fun == 'equal':
coeff = torch.cat([torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda()
elif fun == 'linear':
coeff = torch.cat([(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda()
elif fun == 'sqrt':
coeff = torch.cat([np.sqrt(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda()
elif fun == 'square':
coeff = torch.cat([np.square(2 ** i) / groups_per_scale[num_scales - i - 1] * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda()
else:
raise NotImplementedError
# convert min to 1.
coeff /= torch.min(coeff)
return coeff
def kl_per_group(kl_all):
kl_vals = torch.mean(kl_all, dim=0)
kl_coeff_i = torch.abs(kl_all)
kl_coeff_i = torch.mean(kl_coeff_i, dim=0, keepdim=True) + 0.01
return kl_coeff_i, kl_vals
def kl_balancer(kl_all, kl_coeff=1.0, kl_balance=False, alpha_i=None):
if kl_balance and kl_coeff < 1.0:
alpha_i = alpha_i.unsqueeze(0)
kl_all = torch.stack(kl_all, dim=1)
kl_coeff_i, kl_vals = kl_per_group(kl_all)
total_kl = torch.sum(kl_coeff_i)
kl_coeff_i = kl_coeff_i / alpha_i * total_kl
kl_coeff_i = kl_coeff_i / torch.mean(kl_coeff_i, dim=1, keepdim=True)
kl = torch.sum(kl_all * kl_coeff_i.detach(), dim=1)
# for reporting
kl_coeffs = kl_coeff_i.squeeze(0)
else:
kl_all = torch.stack(kl_all, dim=1)
kl_vals = torch.mean(kl_all, dim=0)
kl = torch.sum(kl_all, dim=1)
kl_coeffs = torch.ones(size=(len(kl_vals),))
return kl_coeff * kl, kl_coeffs, kl_vals
def kl_coeff(step, total_step, constant_step, min_kl_coeff):
return max(min((step - constant_step) / total_step, 1.0), min_kl_coeff)
def log_iw(decoder, x, log_q, log_p, crop=False):
recon = reconstruction_loss(decoder, x, crop)
return - recon - log_q + log_p
def reconstruction_loss(decoder, x, crop=False):
from distributions import Normal, DiscMixLogistic
recon = decoder.log_prob(x)
if crop:
recon = recon[:, :, 2:30, 2:30]
if isinstance(decoder, DiscMixLogistic):
return - torch.sum(recon, dim=[1, 2]) # summation over RGB is done.
else:
return - torch.sum(recon, dim=[1, 2, 3])
def tile_image(batch_image, n):
assert n * n == batch_image.size(0)
channels, height, width = batch_image.size(1), batch_image.size(2), batch_image.size(3)
batch_image = batch_image.view(n, n, channels, height, width)
batch_image = batch_image.permute(2, 0, 3, 1, 4) # n, height, n, width, c
batch_image = batch_image.contiguous().view(channels, n * height, n * width)
return batch_image
def average_gradients(params, is_distributed):
""" Gradient averaging. """
if is_distributed:
size = float(dist.get_world_size())
for param in params:
if param.requires_grad:
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
param.grad.data /= size
def average_params(params, is_distributed):
""" parameter averaging. """
if is_distributed:
size = float(dist.get_world_size())
for param in params:
dist.all_reduce(param.data, op=dist.ReduceOp.SUM)
param.data /= size
def average_tensor(t, is_distributed):
if is_distributed:
size = float(dist.get_world_size())
dist.all_reduce(t.data, op=dist.ReduceOp.SUM)
t.data /= size
def one_hot(indices, depth, dim):
indices = indices.unsqueeze(dim)
size = list(indices.size())
size[dim] = depth
y_onehot = torch.zeros(size).cuda()
y_onehot.zero_()
y_onehot.scatter_(dim, indices, 1)
return y_onehot
def num_output(dataset):
if dataset == 'mnist':
return 28 * 28
elif dataset == 'cifar10':
return 3 * 32 * 32
elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'):
size = int(dataset.split('_')[-1])
return 3 * size * size
elif dataset == 'ffhq':
return 3 * 256 * 256
else:
raise NotImplementedError
def get_input_size(dataset):
if dataset == 'mnist':
return 32
elif dataset == 'cifar10':
return 32
elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'):
size = int(dataset.split('_')[-1])
return size
elif dataset == 'ffhq':
return 256
else:
raise NotImplementedError
def pre_process(x, num_bits):
if num_bits != 8:
x = torch.floor(x * 255 / 2 ** (8 - num_bits))
x /= (2 ** num_bits - 1)
return x
def get_arch_cells(arch_type):
if arch_type == 'res_elu':
arch_cells = dict()
arch_cells['normal_enc'] = ['res_elu', 'res_elu']
arch_cells['down_enc'] = ['res_elu', 'res_elu']
arch_cells['normal_dec'] = ['res_elu', 'res_elu']
arch_cells['up_dec'] = ['res_elu', 'res_elu']
arch_cells['normal_pre'] = ['res_elu', 'res_elu']
arch_cells['down_pre'] = ['res_elu', 'res_elu']
arch_cells['normal_post'] = ['res_elu', 'res_elu']
arch_cells['up_post'] = ['res_elu', 'res_elu']
arch_cells['ar_nn'] = ['']
elif arch_type == 'res_bnelu':
arch_cells = dict()
arch_cells['normal_enc'] = ['res_bnelu', 'res_bnelu']
arch_cells['down_enc'] = ['res_bnelu', 'res_bnelu']
arch_cells['normal_dec'] = ['res_bnelu', 'res_bnelu']
arch_cells['up_dec'] = ['res_bnelu', 'res_bnelu']
arch_cells['normal_pre'] = ['res_bnelu', 'res_bnelu']
arch_cells['down_pre'] = ['res_bnelu', 'res_bnelu']
arch_cells['normal_post'] = ['res_bnelu', 'res_bnelu']
arch_cells['up_post'] = ['res_bnelu', 'res_bnelu']
arch_cells['ar_nn'] = ['']
elif arch_type == 'res_bnswish':
arch_cells = dict()
arch_cells['normal_enc'] = ['res_bnswish', 'res_bnswish']
arch_cells['down_enc'] = ['res_bnswish', 'res_bnswish']
arch_cells['normal_dec'] = ['res_bnswish', 'res_bnswish']
arch_cells['up_dec'] = ['res_bnswish', 'res_bnswish']
arch_cells['normal_pre'] = ['res_bnswish', 'res_bnswish']
arch_cells['down_pre'] = ['res_bnswish', 'res_bnswish']
arch_cells['normal_post'] = ['res_bnswish', 'res_bnswish']
arch_cells['up_post'] = ['res_bnswish', 'res_bnswish']
arch_cells['ar_nn'] = ['']
elif arch_type == 'mbconv_sep':
arch_cells = dict()
arch_cells['normal_enc'] = ['mconv_e6k5g0']
arch_cells['down_enc'] = ['mconv_e6k5g0']
arch_cells['normal_dec'] = ['mconv_e6k5g0']
arch_cells['up_dec'] = ['mconv_e6k5g0']
arch_cells['normal_pre'] = ['mconv_e3k5g0']
arch_cells['down_pre'] = ['mconv_e3k5g0']
arch_cells['normal_post'] = ['mconv_e3k5g0']
arch_cells['up_post'] = ['mconv_e3k5g0']
arch_cells['ar_nn'] = ['']
elif arch_type == 'mbconv_sep11':
arch_cells = dict()
arch_cells['normal_enc'] = ['mconv_e6k11g0']
arch_cells['down_enc'] = ['mconv_e6k11g0']
arch_cells['normal_dec'] = ['mconv_e6k11g0']
arch_cells['up_dec'] = ['mconv_e6k11g0']
arch_cells['normal_pre'] = ['mconv_e3k5g0']
arch_cells['down_pre'] = ['mconv_e3k5g0']
arch_cells['normal_post'] = ['mconv_e3k5g0']
arch_cells['up_post'] = ['mconv_e3k5g0']
arch_cells['ar_nn'] = ['']
elif arch_type == 'res_mbconv':
arch_cells = dict()
arch_cells['normal_enc'] = ['res_bnswish', 'res_bnswish']
arch_cells['down_enc'] = ['res_bnswish', 'res_bnswish']
arch_cells['normal_dec'] = ['mconv_e6k5g0']
arch_cells['up_dec'] = ['mconv_e6k5g0']
arch_cells['normal_pre'] = ['res_bnswish', 'res_bnswish']
arch_cells['down_pre'] = ['res_bnswish', 'res_bnswish']
arch_cells['normal_post'] = ['mconv_e3k5g0']
arch_cells['up_post'] = ['mconv_e3k5g0']
arch_cells['ar_nn'] = ['']
elif arch_type == 'res53_mbconv':
arch_cells = dict()
arch_cells['normal_enc'] = ['res_bnswish5', 'res_bnswish']
arch_cells['down_enc'] = ['res_bnswish5', 'res_bnswish']
arch_cells['normal_dec'] = ['mconv_e6k5g0']
arch_cells['up_dec'] = ['mconv_e6k5g0']
arch_cells['normal_pre'] = ['res_bnswish5', 'res_bnswish']
arch_cells['down_pre'] = ['res_bnswish5', 'res_bnswish']
arch_cells['normal_post'] = ['mconv_e3k5g0']
arch_cells['up_post'] = ['mconv_e3k5g0']
arch_cells['ar_nn'] = ['']
elif arch_type == 'res35_mbconv':
arch_cells = dict()
arch_cells['normal_enc'] = ['res_bnswish', 'res_bnswish5']
arch_cells['down_enc'] = ['res_bnswish', 'res_bnswish5']
arch_cells['normal_dec'] = ['mconv_e6k5g0']
arch_cells['up_dec'] = ['mconv_e6k5g0']
arch_cells['normal_pre'] = ['res_bnswish', 'res_bnswish5']
arch_cells['down_pre'] = ['res_bnswish', 'res_bnswish5']
arch_cells['normal_post'] = ['mconv_e3k5g0']
arch_cells['up_post'] = ['mconv_e3k5g0']
arch_cells['ar_nn'] = ['']
elif arch_type == 'res55_mbconv':
arch_cells = dict()
arch_cells['normal_enc'] = ['res_bnswish5', 'res_bnswish5']
arch_cells['down_enc'] = ['res_bnswish5', 'res_bnswish5']
arch_cells['normal_dec'] = ['mconv_e6k5g0']
arch_cells['up_dec'] = ['mconv_e6k5g0']
arch_cells['normal_pre'] = ['res_bnswish5', 'res_bnswish5']
arch_cells['down_pre'] = ['res_bnswish5', 'res_bnswish5']
arch_cells['normal_post'] = ['mconv_e3k5g0']
arch_cells['up_post'] = ['mconv_e3k5g0']
arch_cells['ar_nn'] = ['']
elif arch_type == 'res_mbconv9':
arch_cells = dict()
arch_cells['normal_enc'] = ['res_bnswish', 'res_bnswish']
arch_cells['down_enc'] = ['res_bnswish', 'res_bnswish']
arch_cells['normal_dec'] = ['mconv_e6k9g0']
arch_cells['up_dec'] = ['mconv_e6k9g0']
arch_cells['normal_pre'] = ['res_bnswish', 'res_bnswish']
arch_cells['down_pre'] = ['res_bnswish', 'res_bnswish']
arch_cells['normal_post'] = ['mconv_e3k9g0']
arch_cells['up_post'] = ['mconv_e3k9g0']
arch_cells['ar_nn'] = ['']
elif arch_type == 'mbconv_res':
arch_cells = dict()
arch_cells['normal_enc'] = ['mconv_e6k5g0']
arch_cells['down_enc'] = ['mconv_e6k5g0']
arch_cells['normal_dec'] = ['res_bnswish', 'res_bnswish']
arch_cells['up_dec'] = ['res_bnswish', 'res_bnswish']
arch_cells['normal_pre'] = ['mconv_e3k5g0']
arch_cells['down_pre'] = ['mconv_e3k5g0']
arch_cells['normal_post'] = ['res_bnswish', 'res_bnswish']
arch_cells['up_post'] = ['res_bnswish', 'res_bnswish']
arch_cells['ar_nn'] = ['']
elif arch_type == 'mbconv_den':
arch_cells = dict()
arch_cells['normal_enc'] = ['mconv_e6k5g0']
arch_cells['down_enc'] = ['mconv_e6k5g0']
arch_cells['normal_dec'] = ['mconv_e6k5g0']
arch_cells['up_dec'] = ['mconv_e6k5g0']
arch_cells['normal_pre'] = ['mconv_e3k5g8']
arch_cells['down_pre'] = ['mconv_e3k5g8']
arch_cells['normal_post'] = ['mconv_e3k5g8']
arch_cells['up_post'] = ['mconv_e3k5g8']
arch_cells['ar_nn'] = ['']
else:
raise NotImplementedError
return arch_cells
def groups_per_scale(num_scales, num_groups_per_scale, is_adaptive, divider=2, minimum_groups=1):
g = []
n = num_groups_per_scale
for s in range(num_scales):
assert n >= 1
g.append(n)
if is_adaptive:
n = n // divider
n = max(minimum_groups, n)
return g