Skip to content

Commit

Permalink
Init
Browse files Browse the repository at this point in the history
  • Loading branch information
cantabile-kwok committed Oct 7, 2023
1 parent df6b2f4 commit 73537de
Show file tree
Hide file tree
Showing 22 changed files with 27,782 additions and 1 deletion.
2 changes: 1 addition & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -149,4 +149,4 @@ cython_debug/
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
.idea/
196 changes: 196 additions & 0 deletions data_collate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,196 @@
import os.path
import random
import numpy as np
import torch
import re
import torch.utils.data

import kaldiio
from tqdm import tqdm


class BaseCollate:
def __init__(self, n_frames_per_step=1):
self.n_frames_per_step = n_frames_per_step

def collate_text_mel(self, batch: [dict]):
"""
:param batch: list of dicts
This function sorts batch elements by its length and concatenate all batch elements into pytorch tensors
"""
contains_noise = (batch[0]['noise'] is not None)
utt = list(map(lambda x: x['utt'], batch))
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([len(x['phn_ids']) for x in batch]),
dim=0, descending=True)
max_input_len = input_lengths[0]

text_padded = torch.LongTensor(len(batch), max_input_len)
text_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
text = batch[ids_sorted_decreasing[i]]['phn_ids']
text_padded[i, :text.size(0)] = text

# Right zero-pad mel-spec
num_mels = batch[0]['mel'].size(0)
max_target_len = max([x['mel'].size(1) for x in batch])
if max_target_len % self.n_frames_per_step != 0:
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
assert max_target_len % self.n_frames_per_step == 0

# include mel padded
mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
mel_padded.zero_()
noise_padded = torch.zeros_like(mel_padded)
output_lengths = torch.LongTensor(len(batch))
for i in range(len(ids_sorted_decreasing)):
mel = batch[ids_sorted_decreasing[i]]['mel']
mel_padded[i, :, :mel.size(1)] = mel

output_lengths[i] = mel.size(1)
if contains_noise:
noise = batch[ids_sorted_decreasing[i]]['noise']
noise_padded[i, :, :mel.size(1)] = noise

dur_padded = torch.LongTensor(len(batch), max_input_len)
dur_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
dur = batch[ids_sorted_decreasing[i]]['dur']
dur_padded[i, :dur.size(0)] = dur

utt_name = np.array(utt)[ids_sorted_decreasing].tolist()
if isinstance(utt_name, str):
utt_name = [utt_name]

res = {
"utt": utt_name,
"text_padded": text_padded,
"input_lengths": input_lengths,
"mel_padded": mel_padded,
"noise_padded": noise_padded if contains_noise else None,
"output_lengths": output_lengths,
"dur_padded": dur_padded
}
return res, ids_sorted_decreasing


class SpkIDCollate(BaseCollate):
def __call__(self, batch, *args, **kwargs):
base_data, ids_sorted_decreasing = self.collate_text_mel(batch)
spk_ids = torch.LongTensor(list(map(lambda x: x["spk_ids"], batch)))
spk_ids = spk_ids[ids_sorted_decreasing]
base_data.update({
"spk_ids": spk_ids
})
return base_data


class XvectorCollate(BaseCollate):
def __call__(self, batch, *args, **kwargs):
base_data, ids_sorted_decreasing = self.collate_text_mel(batch)
xvectors = torch.cat(list(map(lambda x: x["xvector"].unsqueeze(0), batch)), dim=0)
xvectors = xvectors[ids_sorted_decreasing]
base_data.update({
"xvector": xvectors
})
return base_data


class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""
Maintain similar input lengths in a batch.
Length groups are specified by boundaries.
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
It removes samples which are not included in the boundaries.
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
"""

def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths = dataset.lengths
self.batch_size = batch_size
self.boundaries = boundaries

self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas

def _create_buckets(self):
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
length = self.lengths[i]
idx_bucket = self._bisect(length)
if idx_bucket != -1:
buckets[idx_bucket].append(i)

for i in range(len(buckets) - 1, 0, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i + 1)

num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
num_samples_per_bucket.append(len_bucket + rem)
return buckets, num_samples_per_bucket

def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)

indices = []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))

batches = []
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
ids_bucket = indices[i]
num_samples_bucket = self.num_samples_per_bucket[i]

# add extra samples to make it evenly divisible
rem = num_samples_bucket - len_bucket
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]

# subsample
ids_bucket = ids_bucket[self.rank::self.num_replicas]

# batching
for j in range(len(ids_bucket) // self.batch_size):
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
batches.append(batch)

if self.shuffle:
batch_ids = torch.randperm(len(batches), generator=g).tolist()
batches = [batches[i] for i in batch_ids]
self.batches = batches

assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)

def _bisect(self, x, lo=0, hi=None):
if hi is None:
hi = len(self.boundaries) - 1

if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
return mid
elif x <= self.boundaries[mid]:
return self._bisect(x, lo, mid)
else:
return self._bisect(x, mid + 1, hi)
else:
return -1

def __len__(self):
return self.num_samples // self.batch_size
Loading

0 comments on commit 73537de

Please sign in to comment.