-
Notifications
You must be signed in to change notification settings - Fork 19
/
utils.py
302 lines (259 loc) · 11.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# @Time : 2022/2/15
# @Author : Hui Yu
# @Email : ishyu@outlook.com
import os
import math
import random
import torch
import datetime
import numpy as np
from scipy.sparse import csr_matrix
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from datasets import FMLPRecDataset
sequential_data_list = ['Beauty','Sports_and_Outdoors','Toys_and_Games','Yelp']
session_based_data_list = ['nowplaying','retailrocket','tmall','yoochoose']
def set_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# some cudnn methods can be random even after fixing the seed
# unless you tell it to be deterministic
torch.backends.cudnn.deterministic = True
def check_path(path):
if not os.path.exists(path):
os.makedirs(path)
print(f'{path} created')
def get_local_time():
r"""Get current time
Returns:
str: current time
"""
cur = datetime.datetime.now()
cur = cur.strftime('%b-%d-%Y_%H-%M-%S')
return cur
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, checkpoint_path, patience=10, verbose=False, delta=0):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 10
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.checkpoint_path = checkpoint_path
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.delta = delta
def compare(self, score):
for i in range(len(score)):
# 有一个指标增加了就认为是还在涨
if score[i] > self.best_score[i]+self.delta:
return False
return True
def __call__(self, score, model):
# score HIT@10 NDCG@10
if self.best_score is None:
self.best_score = score
self.score_min = np.array([0]*len(score))
self.save_checkpoint(score, model)
elif self.compare(score):
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(score, model)
self.counter = 0
def save_checkpoint(self, score, model):
'''Saves model when validation loss decrease.'''
if self.verbose:
# ({self.score_min:.6f} --> {score:.6f}) # 这里如果是一个值的话输出才不会有问题
print(f'Validation score increased. Saving model ...')
torch.save(model.state_dict(), self.checkpoint_path)
self.score_min = score
def generate_rating_matrix_valid(user_seq, num_users, num_items):
# three lists are used to construct sparse matrix
row = []
col = []
data = []
for user_id, item_list in enumerate(user_seq):
for item in item_list[:-2]: #
row.append(user_id)
col.append(item)
data.append(1)
row = np.array(row)
col = np.array(col)
data = np.array(data)
rating_matrix = csr_matrix((data, (row, col)), shape=(num_users, num_items))
return rating_matrix
def generate_rating_matrix_test(user_seq, num_users, num_items):
# three lists are used to construct sparse matrix
row = []
col = []
data = []
for user_id, item_list in enumerate(user_seq):
for item in item_list[:-1]: #
row.append(user_id)
col.append(item)
data.append(1)
row = np.array(row)
col = np.array(col)
data = np.array(data)
rating_matrix = csr_matrix((data, (row, col)), shape=(num_users, num_items))
return rating_matrix
def get_rating_matrix(data_name, seq_dic, max_item):
num_items = max_item + 1
if data_name in sequential_data_list:
valid_rating_matrix = generate_rating_matrix_valid(seq_dic['user_seq'], seq_dic['num_users'], num_items)
test_rating_matrix = generate_rating_matrix_test(seq_dic['user_seq'], seq_dic['num_users'], num_items)
elif data_name in session_based_data_list:
valid_rating_matrix = generate_rating_matrix_test(seq_dic['user_seq_eval'], seq_dic['num_users_eval'], num_items)
test_rating_matrix = generate_rating_matrix_test(seq_dic['user_seq_test'], seq_dic['num_users_test'], num_items)
return valid_rating_matrix, test_rating_matrix
def get_user_seqs_and_max_item(data_file):
lines = open(data_file).readlines()
lines = lines[1:]
user_seq = []
item_set = set()
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split()
items = [int(item) for item in items]
user_seq.append(items)
item_set = item_set | set(items)
max_item = max(item_set)
return user_seq, max_item
def get_user_seqs_and_sample(data_file, sample_file):
lines = open(data_file).readlines()
user_seq = []
item_set = set()
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split(' ')
items = [int(item) for item in items]
user_seq.append(items)
item_set = item_set | set(items)
max_item = max(item_set)
num_users = len(lines)
lines = open(sample_file).readlines()
sample_seq = []
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split(' ')
items = [int(item) for item in items]
sample_seq.append(items)
assert len(user_seq) == len(sample_seq)
return user_seq, max_item, num_users, sample_seq
def get_user_seqs_and_sample4session_based(data_file, sample_file):
lines = open(data_file).readlines()
lines = lines[1:]
user_seq = []
item_set = set()
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split()
items = [int(item) for item in items]
user_seq.append(items)
item_set = item_set | set(items)
num_users = len(lines)
lines = open(sample_file).readlines()
sample_seq = []
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split(' ')
items = [int(item) for item in items]
sample_seq.append(items)
return user_seq, num_users, sample_seq
def get_metric(pred_list, topk=10):
NDCG = 0.0
HIT = 0.0
MRR = 0.0
# [batch] the answer's rank
for rank in pred_list:
MRR += 1.0 / (rank + 1.0)
if rank < topk:
NDCG += 1.0 / np.log2(rank + 2.0)
HIT += 1.0
return HIT /len(pred_list), NDCG /len(pred_list), MRR /len(pred_list)
def recall_at_k(actual, predicted, topk):
sum_recall = 0.0
num_users = len(predicted)
true_users = 0
for i in range(num_users):
act_set = set([actual[i]])
pred_set = set(predicted[i][:topk])
if len(act_set) != 0:
sum_recall += len(act_set & pred_set) / float(len(act_set))
true_users += 1
return sum_recall / true_users
def ndcg_k(actual, predicted, topk):
res = 0
for user_id in range(len(actual)):
k = min(topk, len([actual[user_id]]))
idcg = idcg_k(k)
dcg_k = sum([int(predicted[user_id][j] in
set([actual[user_id]])) / math.log(j+2, 2) for j in range(topk)])
res += dcg_k / idcg
return res / float(len(actual))
# Calculates the ideal discounted cumulative gain at k
def idcg_k(k):
res = sum([1.0/math.log(i+2, 2) for i in range(k)])
if not res:
return 1.0
else:
return res
def get_seq_dic(args):
if args.data_name in sequential_data_list:
args.data_file = args.data_dir + args.data_name + '.txt'
args.sample_file = args.data_dir + args.data_name + '_sample.txt'
user_seq, max_item, num_users, sample_seq = \
get_user_seqs_and_sample(args.data_file, args.sample_file)
seq_dic = {'user_seq':user_seq, 'num_users':num_users, 'sample_seq':sample_seq}
elif args.data_name in session_based_data_list:
args.data_file = args.data_dir + args.data_name +'/'+ args.data_name + '.train.inter'
args.data_file_eval = args.data_dir + args.data_name +'/'+ args.data_name + '.valid.inter'
args.data_file_test = args.data_dir + args.data_name +'/'+ args.data_name + '.test.inter'
args.sample_file_eval = args.data_dir + args.data_name +'/'+ args.data_name + '_valid_sample.txt'
args.sample_file_test = args.data_dir + args.data_name +'/'+ args.data_name + '_test_sample.txt'
user_seq, max_item = \
get_user_seqs_and_max_item(args.data_file)
user_seq_eval, num_users_eval, sample_seq_eval = \
get_user_seqs_and_sample4session_based(args.data_file_eval, args.sample_file_eval)
user_seq_test, num_users_test, sample_seq_test = \
get_user_seqs_and_sample4session_based(args.data_file_test, args.sample_file_test)
seq_dic = {'user_seq':user_seq,
'user_seq_eval':user_seq_eval, 'num_users_eval':num_users_eval, 'sample_seq_eval':sample_seq_eval,
'user_seq_test':user_seq_test, 'num_users_test':num_users_test, 'sample_seq_test':sample_seq_test}
return seq_dic, max_item
def get_dataloder(args,seq_dic):
if args.data_name in sequential_data_list:
train_dataset = FMLPRecDataset(args, seq_dic['user_seq'], data_type='train')
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.batch_size)
eval_dataset = FMLPRecDataset(args, seq_dic['user_seq'], test_neg_items=seq_dic['sample_seq'], data_type='valid')
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.batch_size)
test_dataset = FMLPRecDataset(args, seq_dic['user_seq'], test_neg_items=seq_dic['sample_seq'], data_type='test')
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.batch_size)
elif args.data_name in session_based_data_list:
train_dataset = FMLPRecDataset(args, seq_dic['user_seq'], data_type='session')
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.batch_size)
eval_dataset = FMLPRecDataset(args, seq_dic['user_seq_eval'], test_neg_items=seq_dic['sample_seq_eval'], data_type='session')
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.batch_size)
test_dataset = FMLPRecDataset(args, seq_dic['user_seq_test'], test_neg_items=seq_dic['sample_seq_test'], data_type='session')
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.batch_size)
return train_dataloader, eval_dataloader, test_dataloader