-
Notifications
You must be signed in to change notification settings - Fork 19
/
modules.py
182 lines (151 loc) · 7.6 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# @Time : 2022/2/13
# @Author : Hui Yu
# @Email : ishyu@outlook.com
import copy
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different
(and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) *
(x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": F.relu, "swish": swish}
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class SelfAttention(nn.Module):
def __init__(self, args):
super(SelfAttention, self).__init__()
if args.hidden_size % args.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (args.hidden_size, args.num_attention_heads))
self.num_attention_heads = args.num_attention_heads
self.attention_head_size = int(args.hidden_size / args.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(args.hidden_size, self.all_head_size)
self.key = nn.Linear(args.hidden_size, self.all_head_size)
self.value = nn.Linear(args.hidden_size, self.all_head_size)
self.attn_dropout = nn.Dropout(args.attention_probs_dropout_prob)
# 做完self-attention 做一个前馈全连接 LayerNorm 输出
self.dense = nn.Linear(args.hidden_size, args.hidden_size)
self.LayerNorm = LayerNorm(args.hidden_size, eps=1e-12)
self.out_dropout = nn.Dropout(args.hidden_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_tensor, attention_mask):
mixed_query_layer = self.query(input_tensor)
mixed_key_layer = self.key(input_tensor)
mixed_value_layer = self.value(input_tensor)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
# [batch_size heads seq_len seq_len] scores
# [batch_size 1 1 seq_len]
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
# Fixme
attention_probs = self.attn_dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
hidden_states = self.dense(context_layer)
hidden_states = self.out_dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class FilterLayer(nn.Module):
def __init__(self, args):
super(FilterLayer, self).__init__()
# 做完self-attention 做一个前馈全连接 LayerNorm 输出
self.complex_weight = nn.Parameter(torch.randn(1, args.max_seq_length//2 + 1, args.hidden_size, 2, dtype=torch.float32) * 0.02)
self.out_dropout = nn.Dropout(args.hidden_dropout_prob)
self.LayerNorm = LayerNorm(args.hidden_size, eps=1e-12)
def forward(self, input_tensor):
# [batch, seq_len, hidden]
#sequence_emb_fft = torch.rfft(input_tensor, 2, onesided=False) # [:, :, :, 0]
#sequence_emb_fft = torch.fft(sequence_emb_fft.transpose(1, 2), 2)[:, :, :, 0].transpose(1, 2)
batch, seq_len, hidden = input_tensor.shape
x = torch.fft.rfft(input_tensor, dim=1, norm='ortho')
weight = torch.view_as_complex(self.complex_weight)
x = x * weight
sequence_emb_fft = torch.fft.irfft(x, n=seq_len, dim=1, norm='ortho')
hidden_states = self.out_dropout(sequence_emb_fft)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Intermediate(nn.Module):
def __init__(self, args):
super(Intermediate, self).__init__()
self.dense_1 = nn.Linear(args.hidden_size, args.hidden_size * 4)
if isinstance(args.hidden_act, str):
self.intermediate_act_fn = ACT2FN[args.hidden_act]
else:
self.intermediate_act_fn = args.hidden_act
self.dense_2 = nn.Linear(4 * args.hidden_size, args.hidden_size)
self.LayerNorm = LayerNorm(args.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(args.hidden_dropout_prob)
def forward(self, input_tensor):
hidden_states = self.dense_1(input_tensor)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dense_2(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Layer(nn.Module):
def __init__(self, args):
super(Layer, self).__init__()
self.no_filters = args.no_filters
if self.no_filters:
self.attention = SelfAttention(args)
else:
self.filterlayer = FilterLayer(args)
self.intermediate = Intermediate(args)
def forward(self, hidden_states, attention_mask):
if self.no_filters:
hidden_states = self.attention(hidden_states, attention_mask)
else:
hidden_states = self.filterlayer(hidden_states)
intermediate_output = self.intermediate(hidden_states)
return intermediate_output
class Encoder(nn.Module):
def __init__(self, args):
super(Encoder, self).__init__()
layer = Layer(args)
self.layer = nn.ModuleList([copy.deepcopy(layer)
for _ in range(args.num_hidden_layers)])
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
all_encoder_layers = []
for layer_module in self.layer:
hidden_states = layer_module(hidden_states, attention_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
return all_encoder_layers