This is the pytorch implementation of our paper at SIGIR 2021:
Clicks can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue
Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, Tat-Seng Chua.
- Anaconda 3
- python 3.7.3
- pytorch 1.4.0
- numpy 1.16.4
- model_name: MMGCN.
- l_r: learning rate. Default: 1e-3.
- weight_decay: the hyper-parameter for weight decay. Default: 1e-3.
- gpu_id: the gpu used for training.
Other parameter settings can be found in train.py. We keep the default setings as MMGCN.
python train.py --model_name=$1 --l_r=$2 --weight_decay=$3
or use run.sh
sh run.sh gpu_id model_name l_r weight_decay
The log file will be in the ./log/ folder.
- Download the checkpoints released by us from Google drive.
- Put the '.pth' file into the model_1 folder.
- Run inference.py or run_inference.sh:
python inference.py --model_name=$2 --l_r=$3 --weight_decay=$4 --log_name="$2_tiktok_$3lr_$4wd_$5"
sh run_inference.sh gpu_id model_name l_r weight_decay log_name
- Train MMGCN on Tiktok:
cd ./code/tiktok
CUDA_VISIBLE_DEVICES=0 python main.py --model_name=MMGCN --l_r=1e-3 --weight_decay=1e-3
- Inference MMGCN on Adressa
cd ./code/adressa
sh run_inference.sh 0 MMGCN 1e-3 1e-3 TIE
If you use our code, please kindly cite:
@inproceedings{wang2021Clicks,
title={Clicks can be Cheating: Counterfactual Recommendationfor Mitigating Clickbait Issue},
author={Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua},
booktitle={SIGIR},
year={2021},
publisher={ACM}
}
Thanks to the MMGCN implementation:
- MMGCN from Yinwei Wei.
NUS © NExT++