Skip to content

WWangYuHsiang/SMILEtrack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 

Repository files navigation

SMILEtrack

PWC

PWC

SMILEtrack: SiMIlarity LEarning for Multiple Object Tracking
Yu-Hsiang Wang, Jun-Wei Hsieh, Ping-Yang Chen, Ming-Ching Chang, Hung Hin So, Xin Li

Our paper was accepted by AAAI 2024

  • The directory "SMILEtrack_Official" contains the latest version of SMILEtrack.
  • The directory "BoT-SORT" contains the older version of SMILEtrack.

This code is based on the implementation of ByteTrack, BoT-SORT

update

2024/01:

  • Borrowed and reorganized the latest version of SMILEtrack from the SMILE_track official and filled in the missing components.
  • Added more detailed guidance in the README.
  • Method to reproduce Benchmark Score (Currently in progress)

1. Installation

SMILEtrack code is based on ByteTrack and BoT-SORT

Visit their installation guides for more setup options.

2. Download

PRBNet MOT17 weight link

PRBNet MOT20 weight link

SLM weight link

3.Data Preparation

Download MOT17 from the official website. And put them in the following structure:

<dataets_dir>
      │
      ├── MOT17
      │      ├── train
      │      └── test    
      └——————crowdhuman
      |         └——————Crowdhuman_train
      |         └——————Crowdhuman_val
      |         └——————annotation_train.odgt
      |         └——————annotation_val.odgt
      └——————MOT20
      |        └——————train       
      |        └——————test
      └——————Cityscapes
               └——————images
               └——————labels_with_ids
    

4.Training PRBNet

Single GPU training

cd <prb_dir>
$ python train_aux.py --workers 8 --device 0 --batch-size 4 --data data/mot.yaml --img 1280 1280 --cfg cfg/training/PRB_Series/yolov7-PRB-2PY-e6e-tune-auxpy1.yaml --weights './yolov7-prb-2py-e6e.pt' --name yolov7-prb --hyp data/hyp.scratch.p6.yaml --epochs 100

5.Training SLM

Data structure

<dataets_dir>
    ├─A
    ├─B
    ├─label
    └─list
    

A: images of t1 phase;

B: images of t2 phase;

label: label maps;

list: contains train.txt, val.txt and test.txt, each file records the image names (XXX.png) in the change detection dataset.

For the more detail of the training setting, you can follow BIT_CD training code.

6.Tracking

By submitting the txt files produced in this part to MOTChallenge website and you can get the same results as in the paper. Tuning the tracking parameters carefully could lead to higher performance. In the paper we apply ByteTrack's calibration.

Test on MOT17 with detector PRBNet

cd <SMILEtrack_Official-main/prb>
$ python3 test_track_prb.py --source <dataets_dir/MOT17> --with-reid --benchmark "MOT17" --eval "test" --fp16 --fuse
$ python3 tools/interpolation.py --txt_path <path_to_track_result>

To test on MOT20, please change <dataets_dir/MOT17> and --benchmark "MOT17" to <dataets_dir/MOT20> and --benchmark "MOT20"

Track with detector PRBNet/yolov7

You can apply SMILEtrack on your own detector weights and track on image or video.

Run SMILEtrack with PRBnet:

cd SMILEtrack_Official/prb
$ python3 smiletrack_demo_prb.py --weights <path_to_prb_weights> --source <path_to_images/video> --project <save_result_dir>

Run SMILEtrack with yolov7:

cd SMILEtrack_Official/yolov7
$ python3 smiletrack_demo_yolov7.py --weights <path_to_yolov7_weights> --source <path_to_images/video> --project <save_result_dir>

If your detector code is similar to the yolo series, You can add "SMILEtrack_Official/tracker" into your detector directory and modify the example code(like smiletrack_demo_prb.py) to apply SMILEtrack on your detector.

The key code to insert SMILEtrack into your detector prediction code is as follows:

from tracker.mc_SMILEtrack import SMILEtrack
tracker = SMILEtrack(args)
for image in images:
   dets = detector(image)
   online_targets = tracker.update(dets, info_imgs)

7.Tracking performance

Results on MOT17 challenge test set

Tracker MOTA IDF1 HOTA
SMILEtrack 81.06 80.5 65.28

Results on MOT20 challenge test set

Tracker MOTA IDF1 HOTA
SMILEtrack 78.19 77.53 65.28

8.Acknowledgement

A large part of the codes, ideas and results are borrowed from PRBNet, ByteTrack, BoT-SORT, yolov7, thanks for their excellent work!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •