forked from Vortyne/pureRGB
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpng.py
2357 lines (1986 loc) · 80.3 KB
/
png.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# png.py - PNG encoder/decoder in pure Python
#
# Copyright (C) 2006 Johann C. Rocholl <johann@browsershots.org>
# Portions Copyright (C) 2009 David Jones <drj@pobox.com>
# And probably portions Copyright (C) 2006 Nicko van Someren <nicko@nicko.org>
#
# Original concept by Johann C. Rocholl.
#
# LICENCE (MIT)
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
The ``png`` module can read and write PNG files.
Installation and Overview
-------------------------
``pip install pypng``
For help, type ``import png; help(png)`` in your python interpreter.
A good place to start is the :class:`Reader` and :class:`Writer` classes.
Coverage of PNG formats is fairly complete;
all allowable bit depths (1/2/4/8/16/24/32/48/64 bits per pixel) and
colour combinations are supported:
- greyscale (1/2/4/8/16 bit);
- RGB, RGBA, LA (greyscale with alpha) with 8/16 bits per channel;
- colour mapped images (1/2/4/8 bit).
Interlaced images,
which support a progressive display when downloading,
are supported for both reading and writing.
A number of optional chunks can be specified (when writing)
and understood (when reading): ``tRNS``, ``bKGD``, ``gAMA``.
The ``sBIT`` chunk can be used to specify precision for
non-native bit depths.
Requires Python 3.5 or higher.
Installation is trivial,
but see the ``README.txt`` file (with the source distribution) for details.
Full use of all features will need some reading of the PNG specification
http://www.w3.org/TR/2003/REC-PNG-20031110/.
The package also comes with command line utilities.
- ``pripamtopng`` converts
`Netpbm <http://netpbm.sourceforge.net/>`_ PAM/PNM files to PNG;
- ``pripngtopam`` converts PNG to file PAM/PNM.
There are a few more for simple PNG manipulations.
Spelling and Terminology
------------------------
Generally British English spelling is used in the documentation.
So that's "greyscale" and "colour".
This not only matches the author's native language,
it's also used by the PNG specification.
Colour Models
-------------
The major colour models supported by PNG (and hence by PyPNG) are:
- greyscale;
- greyscale--alpha;
- RGB;
- RGB--alpha.
Also referred to using the abbreviations: L, LA, RGB, RGBA.
Each letter codes a single channel:
*L* is for Luminance or Luma or Lightness (greyscale images);
*A* stands for Alpha, the opacity channel
(used for transparency effects, but higher values are more opaque,
so it makes sense to call it opacity);
*R*, *G*, *B* stand for Red, Green, Blue (colour image).
Lists, arrays, sequences, and so on
-----------------------------------
When getting pixel data out of this module (reading) and
presenting data to this module (writing) there are
a number of ways the data could be represented as a Python value.
The preferred format is a sequence of *rows*,
which each row being a sequence of *values*.
In this format, the values are in pixel order,
with all the values from all the pixels in a row
being concatenated into a single sequence for that row.
Consider an image that is 3 pixels wide by 2 pixels high, and each pixel
has RGB components:
Sequence of rows::
list([R,G,B, R,G,B, R,G,B],
[R,G,B, R,G,B, R,G,B])
Each row appears as its own list,
but the pixels are flattened so that three values for one pixel
simply follow the three values for the previous pixel.
This is the preferred because
it provides a good compromise between space and convenience.
PyPNG regards itself as at liberty to replace any sequence type with
any sufficiently compatible other sequence type;
in practice each row is an array (``bytearray`` or ``array.array``).
To allow streaming the outer list is sometimes
an iterator rather than an explicit list.
An alternative format is a single array holding all the values.
Array of values::
[R,G,B, R,G,B, R,G,B,
R,G,B, R,G,B, R,G,B]
The entire image is one single giant sequence of colour values.
Generally an array will be used (to save space), not a list.
The top row comes first,
and within each row the pixels are ordered from left-to-right.
Within a pixel the values appear in the order R-G-B-A
(or L-A for greyscale--alpha).
There is another format, which should only be used with caution.
It is mentioned because it is used internally,
is close to what lies inside a PNG file itself,
and has some support from the public API.
This format is called *packed*.
When packed, each row is a sequence of bytes (integers from 0 to 255),
just as it is before PNG scanline filtering is applied.
When the bit depth is 8 this is the same as a sequence of rows;
when the bit depth is less than 8 (1, 2 and 4),
several pixels are packed into each byte;
when the bit depth is 16 each pixel value is decomposed into 2 bytes
(and `packed` is a misnomer).
This format is used by the :meth:`Writer.write_packed` method.
It isn't usually a convenient format,
but may be just right if the source data for
the PNG image comes from something that uses a similar format
(for example, 1-bit BMPs, or another PNG file).
"""
__version__ = "0.0.21"
import collections
import io # For io.BytesIO
import itertools
import math
# http://www.python.org/doc/2.4.4/lib/module-operator.html
import operator
import re
import struct
import sys
# http://www.python.org/doc/2.4.4/lib/module-warnings.html
import warnings
import zlib
from array import array
__all__ = ['Image', 'Reader', 'Writer', 'write_chunks', 'from_array']
# The PNG signature.
# http://www.w3.org/TR/PNG/#5PNG-file-signature
signature = struct.pack('8B', 137, 80, 78, 71, 13, 10, 26, 10)
# The xstart, ystart, xstep, ystep for the Adam7 interlace passes.
adam7 = ((0, 0, 8, 8),
(4, 0, 8, 8),
(0, 4, 4, 8),
(2, 0, 4, 4),
(0, 2, 2, 4),
(1, 0, 2, 2),
(0, 1, 1, 2))
def adam7_generate(width, height):
"""
Generate the coordinates for the reduced scanlines
of an Adam7 interlaced image
of size `width` by `height` pixels.
Yields a generator for each pass,
and each pass generator yields a series of (x, y, xstep) triples,
each one identifying a reduced scanline consisting of
pixels starting at (x, y) and taking every xstep pixel to the right.
"""
for xstart, ystart, xstep, ystep in adam7:
if xstart >= width:
continue
yield ((xstart, y, xstep) for y in range(ystart, height, ystep))
# Models the 'pHYs' chunk (used by the Reader)
Resolution = collections.namedtuple('_Resolution', 'x y unit_is_meter')
def group(s, n):
return list(zip(* [iter(s)] * n))
def isarray(x):
return isinstance(x, array)
def check_palette(palette):
"""
Check a palette argument (to the :class:`Writer` class) for validity.
Returns the palette as a list if okay;
raises an exception otherwise.
"""
# None is the default and is allowed.
if palette is None:
return None
p = list(palette)
if not (0 < len(p) <= 256):
raise ProtocolError(
"a palette must have between 1 and 256 entries,"
" see https://www.w3.org/TR/PNG/#11PLTE")
seen_triple = False
for i, t in enumerate(p):
if len(t) not in (3, 4):
raise ProtocolError(
"palette entry %d: entries must be 3- or 4-tuples." % i)
if len(t) == 3:
seen_triple = True
if seen_triple and len(t) == 4:
raise ProtocolError(
"palette entry %d: all 4-tuples must precede all 3-tuples" % i)
for x in t:
if int(x) != x or not(0 <= x <= 255):
raise ProtocolError(
"palette entry %d: "
"values must be integer: 0 <= x <= 255" % i)
return p
def check_sizes(size, width, height):
"""
Check that these arguments, if supplied, are consistent.
Return a (width, height) pair.
"""
if not size:
return width, height
if len(size) != 2:
raise ProtocolError(
"size argument should be a pair (width, height)")
if width is not None and width != size[0]:
raise ProtocolError(
"size[0] (%r) and width (%r) should match when both are used."
% (size[0], width))
if height is not None and height != size[1]:
raise ProtocolError(
"size[1] (%r) and height (%r) should match when both are used."
% (size[1], height))
return size
def check_color(c, greyscale, which):
"""
Checks that a colour argument for transparent or background options
is the right form.
Returns the colour
(which, if it's a bare integer, is "corrected" to a 1-tuple).
"""
if c is None:
return c
if greyscale:
try:
len(c)
except TypeError:
c = (c,)
if len(c) != 1:
raise ProtocolError("%s for greyscale must be 1-tuple" % which)
if not is_natural(c[0]):
raise ProtocolError(
"%s colour for greyscale must be integer" % which)
else:
if not (len(c) == 3 and
is_natural(c[0]) and
is_natural(c[1]) and
is_natural(c[2])):
raise ProtocolError(
"%s colour must be a triple of integers" % which)
return c
class Error(Exception):
def __str__(self):
return self.__class__.__name__ + ': ' + ' '.join(self.args)
class FormatError(Error):
"""
Problem with input file format.
In other words, PNG file does not conform to
the specification in some way and is invalid.
"""
class ProtocolError(Error):
"""
Problem with the way the programming interface has been used,
or the data presented to it.
"""
class ChunkError(FormatError):
pass
class Default:
"""The default for the greyscale parameter."""
class Writer:
"""
PNG encoder in pure Python.
"""
def __init__(self, width=None, height=None,
size=None,
greyscale=Default,
alpha=False,
bitdepth=8,
palette=None,
transparent=None,
background=None,
gamma=None,
compression=None,
interlace=False,
planes=None,
colormap=None,
maxval=None,
chunk_limit=2**20,
x_pixels_per_unit=None,
y_pixels_per_unit=None,
unit_is_meter=False):
"""
Create a PNG encoder object.
Arguments:
width, height
Image size in pixels, as two separate arguments.
size
Image size (w,h) in pixels, as single argument.
greyscale
Pixels are greyscale, not RGB.
alpha
Input data has alpha channel (RGBA or LA).
bitdepth
Bit depth: from 1 to 16 (for each channel).
palette
Create a palette for a colour mapped image (colour type 3).
transparent
Specify a transparent colour (create a ``tRNS`` chunk).
background
Specify a default background colour (create a ``bKGD`` chunk).
gamma
Specify a gamma value (create a ``gAMA`` chunk).
compression
zlib compression level: 0 (none) to 9 (more compressed);
default: -1 or None.
interlace
Create an interlaced image.
chunk_limit
Write multiple ``IDAT`` chunks to save memory.
x_pixels_per_unit
Number of pixels a unit along the x axis (write a
`pHYs` chunk).
y_pixels_per_unit
Number of pixels a unit along the y axis (write a
`pHYs` chunk). Along with `x_pixel_unit`, this gives
the pixel size ratio.
unit_is_meter
`True` to indicate that the unit (for the `pHYs`
chunk) is metre.
The image size (in pixels) can be specified either by using the
`width` and `height` arguments, or with the single `size`
argument.
If `size` is used it should be a pair (*width*, *height*).
The `greyscale` argument indicates whether input pixels
are greyscale (when true), or colour (when false).
The default is true unless `palette=` is used.
The `alpha` argument (a boolean) specifies
whether input pixels have an alpha channel (or not).
`bitdepth` specifies the bit depth of the source pixel values.
Each channel may have a different bit depth.
Each source pixel must have values that are
an integer between 0 and ``2**bitdepth-1``, where
`bitdepth` is the bit depth for the corresponding channel.
For example, 8-bit images have values between 0 and 255.
PNG only stores images with bit depths of
1,2,4,8, or 16 (the same for all channels).
When `bitdepth` is not one of these values or where
channels have different bit depths,
the next highest valid bit depth is selected,
and an ``sBIT`` (significant bits) chunk is generated
that specifies the original precision of the source image.
In this case the supplied pixel values will be rescaled to
fit the range of the selected bit depth.
The PNG file format supports many bit depth / colour model
combinations, but not all.
The details are somewhat arcane
(refer to the PNG specification for full details).
Briefly:
Bit depths < 8 (1,2,4) are only allowed with greyscale and
colour mapped images;
colour mapped images cannot have bit depth 16.
For colour mapped images
(in other words, when the `palette` argument is specified)
the `bitdepth` argument must match one of
the valid PNG bit depths: 1, 2, 4, or 8.
(It is valid to have a PNG image with a palette and
an ``sBIT`` chunk, but the meaning is slightly different;
it would be awkward to use the `bitdepth` argument for this.)
The `palette` option, when specified,
causes a colour mapped image to be created:
the PNG colour type is set to 3;
`greyscale` must not be true; `alpha` must not be true;
`transparent` must not be set.
The bit depth must be 1,2,4, or 8.
When a colour mapped image is created,
the pixel values are palette indexes and
the `bitdepth` argument specifies the size of these indexes
(not the size of the colour values in the palette).
The palette argument value should be a sequence of 3- or
4-tuples.
3-tuples specify RGB palette entries;
4-tuples specify RGBA palette entries.
All the 4-tuples (if present) must come before all the 3-tuples.
A ``PLTE`` chunk is created;
if there are 4-tuples then a ``tRNS`` chunk is created as well.
The ``PLTE`` chunk will contain all the RGB triples in the same
sequence;
the ``tRNS`` chunk will contain the alpha channel for
all the 4-tuples, in the same sequence.
Palette entries are always 8-bit.
If specified, the `transparent` and `background` parameters must be
a tuple with one element for each channel in the image.
Either a 3-tuple of integer (RGB) values for a colour image, or
a 1-tuple of a single integer for a greyscale image.
If specified, the `gamma` parameter must be a positive number
(generally, a `float`).
A ``gAMA`` chunk will be created.
Note that this will not change the values of the pixels as
they appear in the PNG file,
they are assumed to have already
been converted appropriately for the gamma specified.
The `compression` argument specifies the compression level to
be used by the ``zlib`` module.
Values from 1 to 9 (highest) specify compression.
0 means no compression.
-1 and ``None`` both mean that the ``zlib`` module uses
the default level of compression (which is generally acceptable).
If `interlace` is true then an interlaced image is created
(using PNG's so far only interlace method, *Adam7*).
This does not affect how the pixels should be passed in,
rather it changes how they are arranged into the PNG file.
On slow connexions interlaced images can be
partially decoded by the browser to give
a rough view of the image that is
successively refined as more image data appears.
.. note ::
Enabling the `interlace` option requires the entire image
to be processed in working memory.
`chunk_limit` is used to limit the amount of memory used whilst
compressing the image.
In order to avoid using large amounts of memory,
multiple ``IDAT`` chunks may be created.
"""
# At the moment the `planes` argument is ignored;
# its purpose is to act as a dummy so that
# ``Writer(x, y, **info)`` works, where `info` is a dictionary
# returned by Reader.read and friends.
# Ditto for `colormap`.
width, height = check_sizes(size, width, height)
del size
if not is_natural(width) or not is_natural(height):
raise ProtocolError("width and height must be integers")
if width <= 0 or height <= 0:
raise ProtocolError("width and height must be greater than zero")
# http://www.w3.org/TR/PNG/#7Integers-and-byte-order
if width > 2 ** 31 - 1 or height > 2 ** 31 - 1:
raise ProtocolError("width and height cannot exceed 2**31-1")
if alpha and transparent is not None:
raise ProtocolError(
"transparent colour not allowed with alpha channel")
# bitdepth is either single integer, or tuple of integers.
# Convert to tuple.
try:
len(bitdepth)
except TypeError:
bitdepth = (bitdepth, )
for b in bitdepth:
valid = is_natural(b) and 1 <= b <= 16
if not valid:
raise ProtocolError(
"each bitdepth %r must be a positive integer <= 16" %
(bitdepth,))
# Calculate channels, and
# expand bitdepth to be one element per channel.
palette = check_palette(palette)
alpha = bool(alpha)
colormap = bool(palette)
if greyscale is Default and palette:
greyscale = False
greyscale = bool(greyscale)
if colormap:
color_planes = 1
planes = 1
else:
color_planes = (3, 1)[greyscale]
planes = color_planes + alpha
if len(bitdepth) == 1:
bitdepth *= planes
bitdepth, self.rescale = check_bitdepth_rescale(
palette,
bitdepth,
transparent, alpha, greyscale)
# These are assertions, because above logic should have
# corrected or raised all problematic cases.
if bitdepth < 8:
assert greyscale or palette
assert not alpha
if bitdepth > 8:
assert not palette
transparent = check_color(transparent, greyscale, 'transparent')
background = check_color(background, greyscale, 'background')
# It's important that the true boolean values
# (greyscale, alpha, colormap, interlace) are converted
# to bool because Iverson's convention is relied upon later on.
self.width = width
self.height = height
self.transparent = transparent
self.background = background
self.gamma = gamma
self.greyscale = greyscale
self.alpha = alpha
self.colormap = colormap
self.bitdepth = int(bitdepth)
self.compression = compression
self.chunk_limit = chunk_limit
self.interlace = bool(interlace)
self.palette = palette
self.x_pixels_per_unit = x_pixels_per_unit
self.y_pixels_per_unit = y_pixels_per_unit
self.unit_is_meter = bool(unit_is_meter)
self.color_type = (4 * self.alpha +
2 * (not greyscale) +
1 * self.colormap)
assert self.color_type in (0, 2, 3, 4, 6)
self.color_planes = color_planes
self.planes = planes
# :todo: fix for bitdepth < 8
self.psize = (self.bitdepth / 8) * self.planes
def write(self, outfile, rows):
"""
Write a PNG image to the output file.
`rows` should be an iterable that yields each row
(each row is a sequence of values).
The rows should be the rows of the original image,
so there should be ``self.height`` rows of
``self.width * self.planes`` values.
If `interlace` is specified (when creating the instance),
then an interlaced PNG file will be written.
Supply the rows in the normal image order;
the interlacing is carried out internally.
.. note ::
Interlacing requires the entire image to be in working memory.
"""
# Values per row
vpr = self.width * self.planes
def check_rows(rows):
"""
Yield each row in rows,
but check each row first (for correct width).
"""
for i, row in enumerate(rows):
try:
wrong_length = len(row) != vpr
except TypeError:
# When using an itertools.ichain object or
# other generator not supporting __len__,
# we set this to False to skip the check.
wrong_length = False
if wrong_length:
# Note: row numbers start at 0.
raise ProtocolError(
"Expected %d values but got %d values, in row %d" %
(vpr, len(row), i))
yield row
if self.interlace:
fmt = 'BH'[self.bitdepth > 8]
a = array(fmt, itertools.chain(*check_rows(rows)))
return self.write_array(outfile, a)
nrows = self.write_passes(outfile, check_rows(rows))
if nrows != self.height:
raise ProtocolError(
"rows supplied (%d) does not match height (%d)" %
(nrows, self.height))
return nrows
def write_passes(self, outfile, rows):
"""
Write a PNG image to the output file.
Most users are expected to find the :meth:`write` or
:meth:`write_array` method more convenient.
The rows should be given to this method in the order that
they appear in the output file.
For straightlaced images, this is the usual top to bottom ordering.
For interlaced images the rows should have been interlaced before
passing them to this function.
`rows` should be an iterable that yields each row
(each row being a sequence of values).
"""
# Ensure rows are scaled (to 4-/8-/16-bit),
# and packed into bytes.
if self.rescale:
rows = rescale_rows(rows, self.rescale)
if self.bitdepth < 8:
rows = pack_rows(rows, self.bitdepth)
elif self.bitdepth == 16:
rows = unpack_rows(rows)
return self.write_packed(outfile, rows)
def write_packed(self, outfile, rows):
"""
Write PNG file to `outfile`.
`rows` should be an iterator that yields each packed row;
a packed row being a sequence of packed bytes.
The rows have a filter byte prefixed and
are then compressed into one or more IDAT chunks.
They are not processed any further,
so if bitdepth is other than 1, 2, 4, 8, 16,
the pixel values should have been scaled
before passing them to this method.
This method does work for interlaced images but it is best avoided.
For interlaced images, the rows should be
presented in the order that they appear in the file.
"""
self.write_preamble(outfile)
# http://www.w3.org/TR/PNG/#11IDAT
if self.compression is not None:
compressor = zlib.compressobj(self.compression)
else:
compressor = zlib.compressobj()
# data accumulates bytes to be compressed for the IDAT chunk;
# it's compressed when sufficiently large.
data = bytearray()
# raise i scope out of the for loop. set to -1, because the for loop
# sets i to 0 on the first pass
i = -1
for i, row in enumerate(rows):
# Add "None" filter type.
# Currently, it's essential that this filter type be used
# for every scanline as
# we do not mark the first row of a reduced pass image;
# that means we could accidentally compute
# the wrong filtered scanline if we used
# "up", "average", or "paeth" on such a line.
data.append(0)
data.extend(row)
if len(data) > self.chunk_limit:
compressed = compressor.compress(data)
if len(compressed):
write_chunk(outfile, b'IDAT', compressed)
data = bytearray()
compressed = compressor.compress(bytes(data))
flushed = compressor.flush()
if len(compressed) or len(flushed):
write_chunk(outfile, b'IDAT', compressed + flushed)
# http://www.w3.org/TR/PNG/#11IEND
write_chunk(outfile, b'IEND')
return i + 1
def write_preamble(self, outfile):
# http://www.w3.org/TR/PNG/#5PNG-file-signature
outfile.write(signature)
# http://www.w3.org/TR/PNG/#11IHDR
write_chunk(outfile, b'IHDR',
struct.pack("!2I5B", self.width, self.height,
self.bitdepth, self.color_type,
0, 0, self.interlace))
# See :chunk:order
# http://www.w3.org/TR/PNG/#11gAMA
if self.gamma is not None:
write_chunk(outfile, b'gAMA',
struct.pack("!L", int(round(self.gamma * 1e5))))
# See :chunk:order
# http://www.w3.org/TR/PNG/#11sBIT
if self.rescale:
write_chunk(
outfile, b'sBIT',
struct.pack('%dB' % self.planes,
* [s[0] for s in self.rescale]))
# :chunk:order: Without a palette (PLTE chunk),
# ordering is relatively relaxed.
# With one, gAMA chunk must precede PLTE chunk
# which must precede tRNS and bKGD.
# See http://www.w3.org/TR/PNG/#5ChunkOrdering
if self.palette:
p, t = make_palette_chunks(self.palette)
write_chunk(outfile, b'PLTE', p)
if t:
# tRNS chunk is optional;
# Only needed if palette entries have alpha.
write_chunk(outfile, b'tRNS', t)
# http://www.w3.org/TR/PNG/#11tRNS
if self.transparent is not None:
if self.greyscale:
fmt = "!1H"
else:
fmt = "!3H"
write_chunk(outfile, b'tRNS',
struct.pack(fmt, *self.transparent))
# http://www.w3.org/TR/PNG/#11bKGD
if self.background is not None:
if self.greyscale:
fmt = "!1H"
else:
fmt = "!3H"
write_chunk(outfile, b'bKGD',
struct.pack(fmt, *self.background))
# http://www.w3.org/TR/PNG/#11pHYs
if (self.x_pixels_per_unit is not None and
self.y_pixels_per_unit is not None):
tup = (self.x_pixels_per_unit,
self.y_pixels_per_unit,
int(self.unit_is_meter))
write_chunk(outfile, b'pHYs', struct.pack("!LLB", *tup))
def write_array(self, outfile, pixels):
"""
Write an array that holds all the image values
as a PNG file on the output file.
See also :meth:`write` method.
"""
if self.interlace:
if type(pixels) != array:
# Coerce to array type
fmt = 'BH'[self.bitdepth > 8]
pixels = array(fmt, pixels)
return self.write_passes(
outfile,
self.array_scanlines_interlace(pixels)
)
else:
return self.write_passes(
outfile,
self.array_scanlines(pixels)
)
def array_scanlines(self, pixels):
"""
Generates rows (each a sequence of values) from
a single array of values.
"""
# Values per row
vpr = self.width * self.planes
stop = 0
for y in range(self.height):
start = stop
stop = start + vpr
yield pixels[start:stop]
def array_scanlines_interlace(self, pixels):
"""
Generator for interlaced scanlines from an array.
`pixels` is the full source image as a single array of values.
The generator yields each scanline of the reduced passes in turn,
each scanline being a sequence of values.
"""
# http://www.w3.org/TR/PNG/#8InterlaceMethods
# Array type.
fmt = 'BH'[self.bitdepth > 8]
# Value per row
vpr = self.width * self.planes
# Each iteration generates a scanline starting at (x, y)
# and consisting of every xstep pixels.
for lines in adam7_generate(self.width, self.height):
for x, y, xstep in lines:
# Pixels per row (of reduced image)
ppr = int(math.ceil((self.width - x) / float(xstep)))
# Values per row (of reduced image)
reduced_row_len = ppr * self.planes
if xstep == 1:
# Easy case: line is a simple slice.
offset = y * vpr
yield pixels[offset: offset + vpr]
continue
# We have to step by xstep,
# which we can do one plane at a time
# using the step in Python slices.
row = array(fmt)
# There's no easier way to set the length of an array
row.extend(pixels[0:reduced_row_len])
offset = y * vpr + x * self.planes
end_offset = (y + 1) * vpr
skip = self.planes * xstep
for i in range(self.planes):
row[i::self.planes] = \
pixels[offset + i: end_offset: skip]
yield row
def write_chunk(outfile, tag, data=b''):
"""
Write a PNG chunk to the output file, including length and
checksum.
"""
data = bytes(data)
# http://www.w3.org/TR/PNG/#5Chunk-layout
outfile.write(struct.pack("!I", len(data)))
outfile.write(tag)
outfile.write(data)
checksum = zlib.crc32(tag)
checksum = zlib.crc32(data, checksum)
checksum &= 2 ** 32 - 1
outfile.write(struct.pack("!I", checksum))
def write_chunks(out, chunks):
"""Create a PNG file by writing out the chunks."""
out.write(signature)
for chunk in chunks:
write_chunk(out, *chunk)
def rescale_rows(rows, rescale):
"""
Take each row in rows (an iterator) and yield
a fresh row with the pixels scaled according to
the rescale parameters in the list `rescale`.
Each element of `rescale` is a tuple of
(source_bitdepth, target_bitdepth),
with one element per channel.
"""
# One factor for each channel
fs = [float(2 ** s[1] - 1)/float(2 ** s[0] - 1)
for s in rescale]
# Assume all target_bitdepths are the same
target_bitdepths = set(s[1] for s in rescale)
assert len(target_bitdepths) == 1
(target_bitdepth, ) = target_bitdepths
typecode = 'BH'[target_bitdepth > 8]
# Number of channels
n_chans = len(rescale)
for row in rows:
rescaled_row = array(typecode, iter(row))
for i in range(n_chans):
channel = array(
typecode,
(int(round(fs[i] * x)) for x in row[i::n_chans]))
rescaled_row[i::n_chans] = channel
yield rescaled_row
def pack_rows(rows, bitdepth):
"""Yield packed rows that are a byte array.
Each byte is packed with the values from several pixels.
"""
assert bitdepth < 8
assert 8 % bitdepth == 0
# samples per byte
spb = int(8 / bitdepth)
def make_byte(block):
"""Take a block of (2, 4, or 8) values,
and pack them into a single byte.
"""
res = 0
for v in block:
res = (res << bitdepth) + v
return res
for row in rows:
a = bytearray(row)
# Adding padding bytes so we can group into a whole
# number of spb-tuples.
n = float(len(a))
extra = math.ceil(n / spb) * spb - n
a.extend([0] * int(extra))
# Pack into bytes.
# Each block is the samples for one byte.
blocks = group(a, spb)
yield bytearray(make_byte(block) for block in blocks)
def unpack_rows(rows):
"""Unpack each row from being 16-bits per value,
to being a sequence of bytes.
"""
for row in rows: