-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathifgssm.py
63 lines (56 loc) · 2.76 KB
/
ifgssm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
from ..utils import *
from ..attack import Attack
class IFGSSM(Attack):
"""
I-FGSSM Attack
'Staircase Sign Method for Boosting Adversarial Attacks'(https://arxiv.org/abs/2104.09722)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
targeted (bool): targeted/untargeted attack
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
k (float): percentile interval
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, k=1.5625
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/ifgssm/resnet18 --attack ifgssm --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/ifgssm/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, targeted=False, random_start=False,
norm='linfty', loss='crossentropy', device=None, k=1.5625,**kwargs):
super().__init__('I-FGSSM', model_name, epsilon, targeted, random_start, norm, loss, device, **kwargs)
self.alpha = alpha
self.epoch = epoch
self.decay = 0
self.k = k
def ssign(self, noise):
noise_staircase = torch.zeros_like(noise)
N, C, H, W = noise.size()
medium = []
sign = torch.sign(noise)
temp_noise = noise
abs_noise = abs(noise)
base = self.k / 100
for i in np.arange(self.k, 100.1, self.k):
medium_now = torch.quantile(abs_noise.reshape(-1, H*W), q = float(i/100), dim = 1, keepdim = True, interpolation='lower').reshape(N, C, 1, 1)
medium.append(medium_now)
for j in range(len(medium)):
update = sign * (abs(temp_noise) <= medium[j]).float() * (base + 2 * base * j)
noise_staircase += update
temp_noise += update * 1e5
return noise_staircase
def update_delta(self, delta, data, grad, alpha, **kwargs):
if self.norm == 'linfty':
delta = torch.clamp(delta + alpha * self.ssign(grad), -self.epsilon, self.epsilon)
else:
grad_norm = torch.norm(grad.view(grad.size(0), -1), dim=1).view(-1, 1, 1, 1)
scaled_grad = grad / (grad_norm + 1e-20)
delta = (delta + scaled_grad * alpha).view(delta.size(0), -1).renorm(p=2, dim=0, maxnorm=self.epsilon).view_as(delta)
delta = clamp(delta, img_min-data, img_max-data)
return delta