Skip to content

Generic Event Boundary Captioning (GEBC) Challenge at LOVEU@CVPR 2022 - 3rd place (REVECA)

License

Notifications You must be signed in to change notification settings

TooTouch/REVECA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generic Boundary Event Captioning Challenge at CVPR 2022 LOVEU workshop [paper]

Jaehyuk Heo, YongGi Jeong, Sunwoo Kim, Jaehee Kim, Pilsung Kang
School of Industrial & Management Engineering, Korea University
Seoul, Korea

We propose the Rich Encoder-decoder framework for Video Event Captioner (REVECA). Our model achieves 3rd place in GEBC Challenge.

Environments

  1. Build a docker image and make a docker container
cd docker 
bash docker_build.sh $image_name
  1. Install packages
pip install -r requirements

Datasets

Download Kinetics-GEBC and annotations in here. And save files in ./datasets

datasets/
└── annotations
    ├── testset_highest_f1.json
    ├── trainset_highest_f1.json
    ├── valset_highest_f1.json

Our model uses three video features: instance segmentation mask, TSN features

  1. We use the semantic segmentation mask for the training model. The segmentation model is Mask2Former.

  1. We use TSN features extracted by Temporal Segmentation Networks. TSN features released in GEBC Challenge can download here.

Methods

Our video understanding model is called REVECA, based on CoCa. We use three methods: (1) Temporal-based Pairwise Difference (TPD), (2) Frame position embedding, and (3) LoRA. we use timm version == 0.6.2.dev0 and loralib. And then, we modify a vision_transformer.py for using LoRA.

Results

Method Avg. CIDEr SPICE ROUGE-L
CNN+LSTM 29.94 49.73 13.62 26.46
Robust Change Captioning 34.16 58.56 16.34 27.57
UniVL-revised 36.64 65.74 18.06 26.12
ActBERT-revised 40.80 74.71 19.52 28.15
REVECA (our model) 50.97 93.91 24.66 34.34

Saved Model

Our final model weights can download here.

Citation

About

Generic Event Boundary Captioning (GEBC) Challenge at LOVEU@CVPR 2022 - 3rd place (REVECA)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages