-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathroutines_gm.py
108 lines (88 loc) · 3.58 KB
/
routines_gm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
from model_gm import get_model_from_name
import torch.nn.functional as F
def get_pretrained_model(args, path, data_separated=False, idx=-1):
model = get_model_from_name(args, idx=idx)
if args.gpu_id != -1:
state = torch.load(
path,
map_location=(
lambda s, _: torch.serialization.default_restore_location(s, 'cuda:' + str(args.gpu_id))
),
)
else:
state = torch.load(
path,
map_location=(
lambda s, _: torch.serialization.default_restore_location(s, 'cpu')
),
)
model_state_dict = state['model_state_dict']
if 'test_accuracy' not in state:
state['test_accuracy'] = -1
if 'epoch' not in state:
state['epoch'] = -1
if not data_separated:
print("Loading model at path {} which had accuracy {} and at epoch {}".format(path, state['test_accuracy'],
state['epoch']))
else:
print("Loading model at path {} which had local accuracy {} and overall accuracy {} for choice {} at epoch {}".format(path,
state['local_test_accuracy'], state['test_accuracy'], state['choice'], state['epoch']))
model.load_state_dict(model_state_dict)
if args.gpu_id != -1:
model = model.cuda(args.gpu_id)
if not data_separated:
return model, state['test_accuracy']
else:
return model, state['test_accuracy'], state['local_test_accuracy']
def test(args, network, test_loader, log_dict, debug=False, return_loss=False, is_local=False):
'''
test the accuracies and loss of the model specified in [network] on the dataset specified
by [test_loader]
'''
# turn the mode from train to eval, so that layers like "dropout" would be turned off
network.eval()
test_loss = 0
correct = 0
if is_local:
print("\nTesting in local mode")
else:
print("\nTesting in global mode")
if args.dataset.lower() == 'cifar10':
cifar_criterion = torch.nn.CrossEntropyLoss()
# with torch.no_grad():
for data, target in test_loader:
# print(data.shape, target.shape)
# if len(target.shape)==1:
# data = data.unsqueeze(0)
# target = target.unsqueeze(0)
# print(data, target)
if args.gpu_id!=-1:
data = data.cuda(args.gpu_id)
target = target.cuda(args.gpu_id)
output = network(data)
if debug:
print("output is ", output)
if args.dataset.lower() == 'cifar10':
# mnist models return log_softmax outputs, while cifar ones return raw values!
test_loss += cifar_criterion(output, target).item()
elif args.dataset.lower() == 'mnist':
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
# Alexanderia
# print("size of test_loader dataset: ", len(test_loader.dataset))
test_loss /= len(test_loader.dataset)
if is_local:
string_info = 'local_test'
else:
string_info = 'test'
log_dict['{}_losses'.format(string_info)].append(test_loss)
print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
ans = (float(correct) * 100.0) / len(test_loader.dataset)
if not return_loss:
return ans
else:
return ans, test_loss