-
Notifications
You must be signed in to change notification settings - Fork 65
/
ReFL_SDXL_LoRA.py
1283 lines (1122 loc) · 55.3 KB
/
ReFL_SDXL_LoRA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
@File : ReFL_SDXL_LoRA.py
@Description: ReFL training by using StableDiffusionXLPipeline and adapting LoRA.
* Based on diffusers code base
* https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora_sdxl.py
'''
"""Fine-tuning script for Stable Diffusion XL for text2image with support for LoRA."""
import argparse
from contextlib import nullcontext
import functools
import gc
import logging
import math
import os
import random
import shutil
import accelerate
import datasets
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torchvision.utils import save_image
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import concatenate_datasets, load_dataset
from packaging import version
from peft import LoraConfig, set_peft_model_state_dict
from peft.utils import get_peft_model_state_dict
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel
from diffusers.loaders import StableDiffusionXLLoraLoaderMixin
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel, compute_snr, cast_training_params
from diffusers.utils import (
check_min_version,
convert_state_dict_to_diffusers,
convert_unet_state_dict_to_peft,
is_wandb_available,
)
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
from ImageReward.utils import load
# Import wandb
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.26.0")
logger = get_logger(__name__)
DATASET_NAME_MAPPING = {
# "refl": ("image", "text"),
}
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, cache_dir: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder=subfolder,
revision=revision,
cache_dir=cache_dir,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--grad_scale", type=float, default=1e-3, help="Scale divided for grad loss value."
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--validation_prompts",
type=str,
nargs="+",
default=None,
help="A prompt that is used during validation to verify that the model is learning. The validation is happening at each `--checkpointing_steps`.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="sdxl-model-finetuned",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
'Whether training should be resumed from a previous checkpoint. Use a path or'
'`"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--snr_gamma",
type=float,
default=None,
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
"More details here: https://arxiv.org/abs/2303.09556.",
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam self.optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam self.optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam self.optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--prediction_type",
type=str,
default=None,
help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `self.noise_scheduler.config.prediction_type` is chosen.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=20,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=10,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--rank",
type=int,
default=4,
help=("The dimension of the LoRA update matrices."),
)
# Personal usage arguments
parser.add_argument(
"--apply_pre_loss", action="store_true", help="Whether or not to apply pretrained loss."
)
parser.add_argument(
"--apply_reward_loss", action="store_true", help="Whether or not to apply reward loss."
)
parser.add_argument(
"--image_reward_version",
type=str,
required=True,
help=(
"The version of ImageReward to load with. This could be a downloadable version, i.e. ImageReward-v1.0"
"or a file path."),
)
parser.add_argument(
"--save_only_one_ckpt",
action="store_true",
help="If given, then it only stores one checkpoint through the whole training, the one with the best training loss."
"This is useful to manage the storage."
)
parser.add_argument(
"--image_base_dir",
default="",
help="The base directory where stored all the images."
)
parser.add_argument(
"--mapping_batch_size",
default=128,
type=int,
help="Batch size to map huggingface data."
)
# For evaluation
parser.add_argument(
"--eval_num_imgs_to_generate",
type=int,
default=1,
help="Number of images to generate per prompt during `eval`. Default to 1."
)
parser.add_argument(
"--id_column",
type=str,
default="id",
help="The column of the dataset containing IDs of samples. Default to None, as there isn't.",
)
parser.add_argument(
"--run_name",
type=str,
default="text2image-refl",
help="The project name used by the accelerator's tracker."
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def encode_prompt_rm(batch, caption_column, reward_model):
prompt_batch = batch[caption_column]
text_inputs = reward_model.blip.tokenizer(prompt_batch, padding='max_length', truncation=True, max_length=35, return_tensors="pt")
return {
"rm_input_ids": text_inputs.input_ids,
"rm_attention_mask": text_inputs.attention_mask,
}
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(batch, text_encoders, tokenizers, caption_column, is_train=True):
prompt_embeds_list = []
prompt_batch = batch[caption_column]
captions = []
for caption in prompt_batch:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
with torch.no_grad():
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_inputs = tokenizer(
captions,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(
text_input_ids.to(text_encoder.device),
output_hidden_states=True,
return_dict=False,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds[-1][-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
return {"prompt_embeds": prompt_embeds.cpu(), "pooled_prompt_embeds": pooled_prompt_embeds.cpu()}
def compute_vae_encodings(batch, vae):
images = batch.pop("pixel_values")
pixel_values = torch.stack(list(images))
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
pixel_values = pixel_values.to(vae.device, dtype=vae.dtype)
with torch.no_grad():
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = model_input * vae.config.scaling_factor
return {"model_input": model_input.cpu()}
class Trainer(object):
def __init__(self, pretrained_model_name_or_path, train_data_dir, args) -> None:
self.pretrained_model_name_or_path = pretrained_model_name_or_path
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
self.accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(self.accelerator.state, main_process_only=False)
if self.accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if self.accelerator.is_main_process:
if args.output_dir is not None and not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizers
tokenizer_one = AutoTokenizer.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
use_fast=False,
cache_dir=args.cache_dir
)
tokenizer_two = AutoTokenizer.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=args.revision,
use_fast=False,
cache_dir=args.cache_dir
)
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
self.pretrained_model_name_or_path, args.revision, args.cache_dir
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
self.pretrained_model_name_or_path, args.revision, args.cache_dir, subfolder="text_encoder_2"
)
# Load scheduler and models
self.noise_scheduler = DDPMScheduler.from_pretrained(self.pretrained_model_name_or_path,
subfolder="scheduler",
cache_dir=args.cache_dir
)
# Check for terminal SNR in combination with SNR Gamma
text_encoder_one = text_encoder_cls_one.from_pretrained(self.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
cache_dir=args.cache_dir
)
text_encoder_two = text_encoder_cls_two.from_pretrained(self.pretrained_model_name_or_path,
subfolder="text_encoder_2",
revision=args.revision,
cache_dir=args.cache_dir
)
self.vae = AutoencoderKL.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
cache_dir=args.cache_dir
)
self.unet = UNet2DConditionModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision,
cache_dir=args.cache_dir
)
self.reward_model = load(args.image_reward_version,
device=self.accelerator.device,
med_config="train/src/config/med_config.json",
download_root=args.cache_dir)
# We only train the additional adapter LoRA layers
self.vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
self.unet.requires_grad_(False)
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
self.weight_dtype = torch.float32
if self.accelerator.mixed_precision == "fp16":
self.weight_dtype = torch.float16
elif self.accelerator.mixed_precision == "bf16":
self.weight_dtype = torch.bfloat16
# Move self.unet, vae, reward model, and text_encoder to device and cast to self.weight_dtype
# The VAE is in float32 to avoid NaN losses.
self.vae.to(self.accelerator.device, dtype=self.weight_dtype)
text_encoder_one.to(self.accelerator.device, dtype=self.weight_dtype)
text_encoder_two.to(self.accelerator.device, dtype=self.weight_dtype)
self.reward_model.to(self.accelerator.device, dtype=self.weight_dtype)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
self.unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# now we will add new LoRA weights to the attention layers
# Set correct lora layers
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
self.unet.add_adapter(unet_lora_config)
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if self.accelerator.is_main_process:
unet_lora_layers_to_save = None
for model in models:
if isinstance(self._unwrap_model(model), type(self._unwrap_model(self.unet))):
unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model))
else:
raise ValueError(f"unexpected save model: {model.__class__}")
# make sure to pop weight so that corresponding model is not saved again
if weights:
weights.pop()
StableDiffusionXLPipeline.save_lora_weights(
output_dir,
unet_lora_layers=unet_lora_layers_to_save,
)
def load_model_hook(models, input_dir):
unet_ = None
while len(models) > 0:
model = models.pop()
if isinstance(model, type(self._unwrap_model(self.unet))):
unet_ = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
lora_state_dict, _ = StableDiffusionXLLoraLoaderMixin.lora_state_dict(input_dir)
unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")}
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default")
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
# Make sure the trainable params are in float32. This is again needed since the base models
# are in `weight_dtype`. More details:
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
if args.mixed_precision == "fp16":
models = [unet_]
cast_training_params(models, dtype=torch.float32)
self.accelerator.register_save_state_pre_hook(save_model_hook)
self.accelerator.register_load_state_pre_hook(load_model_hook)
if args.gradient_checkpointing:
self.unet.enable_gradient_checkpointing()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * self.accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# Optimizer creation
params_to_optimize = self.unet.parameters()
self.optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
)
else:
data_files = {}
data_files["train"] = train_data_dir
dataset = load_dataset(
"json",
data_files=data_files,
cache_dir=args.cache_dir,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = dataset["train"].column_names
# 6. Get the column names for input/target.
dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
if args.image_column is None:
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
image_column = args.image_column
if image_column not in column_names:
raise ValueError(
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
)
if args.caption_column is None:
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
caption_column = args.caption_column
if caption_column not in column_names:
raise ValueError(
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
)
if args.id_column is None:
id_column = dataset_columns[2] if dataset_columns is not None else column_names[2]
else:
id_column = args.id_column
if id_column not in column_names:
raise ValueError(
f"--id_column' value '{args.id_column}' needs to be one of: {', '.join(column_names)}"
)
# Preprocessing the datasets.
train_resize = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR)
train_crop = transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution)
train_flip = transforms.RandomHorizontalFlip(p=1.0)
train_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
def preprocess_train(examples):
images = [Image.open(os.path.join(args.image_base_dir, im_file)).convert("RGB") for im_file in examples[image_column]]
# image aug
original_sizes = []
all_images = []
crop_top_lefts = []
for image in images:
original_sizes.append((image.height, image.width))
image = train_resize(image)
if args.random_flip and random.random() < 0.5:
# flip
image = train_flip(image)
if args.center_crop:
y1 = max(0, int(round((image.height - args.resolution) / 2.0)))
x1 = max(0, int(round((image.width - args.resolution) / 2.0)))
image = train_crop(image)
else:
y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution))
image = crop(image, y1, x1, h, w)
crop_top_left = (y1, x1)
crop_top_lefts.append(crop_top_left)
image = train_transforms(image)
all_images.append(image)
examples["original_sizes"] = original_sizes
examples["crop_top_lefts"] = crop_top_lefts
examples["pixel_values"] = all_images
return examples
with self.accelerator.main_process_first():
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
train_dataset = dataset["train"].with_transform(preprocess_train)
# Let's first compute all the embeddings so that we can free up the text encoders
# from memory. We will pre-compute the VAE encodings too.
text_encoders = [text_encoder_one, text_encoder_two]
tokenizers = [tokenizer_one, tokenizer_two]
compute_embeddings_fn = functools.partial(
encode_prompt,
text_encoders=text_encoders,
tokenizers=tokenizers,
caption_column=args.caption_column,
)
compute_vae_encodings_fn = functools.partial(compute_vae_encodings, vae=self.vae)
compute_rm_encodings_fn = functools.partial(
encode_prompt_rm,
caption_column=args.caption_column,
reward_model=self.reward_model,
)
with self.accelerator.main_process_first():
from datasets.fingerprint import Hasher
# fingerprint used by the cache for the other processes to load the result
# details: https://github.com/huggingface/diffusers/pull/4038#discussion_r1266078401
new_fingerprint = Hasher.hash(args)
new_fingerprint_for_vae = Hasher.hash(pretrained_model_name_or_path)
new_fingerprint_for_rm = Hasher.hash(args.image_reward_version)
train_dataset_with_embeddings = train_dataset.map(
compute_embeddings_fn,
batched=True,
batch_size=args.mapping_batch_size,
new_fingerprint=new_fingerprint,
)
train_dataset_with_vae = train_dataset.map(
compute_vae_encodings_fn,
batched=True,
batch_size=args.mapping_batch_size,
new_fingerprint=new_fingerprint_for_vae,
)
train_dataset_with_rm = train_dataset.map(
compute_rm_encodings_fn,
batched=True,
batch_size=args.mapping_batch_size,
new_fingerprint=new_fingerprint_for_rm,
)
self.precomputed_dataset = concatenate_datasets(
[train_dataset_with_embeddings,
train_dataset_with_vae.remove_columns(["image", "text", "id"]),
train_dataset_with_rm.remove_columns(["image", "text", "id"])], axis=1
)
self.precomputed_dataset = self.precomputed_dataset.with_transform(preprocess_train)
del compute_vae_encodings_fn, compute_embeddings_fn, text_encoder_one, text_encoder_two
del text_encoders, tokenizers
gc.collect()
torch.cuda.empty_cache()
def collate_fn(examples):
model_input = torch.stack([torch.tensor(example["model_input"]) for example in examples])
original_sizes = [example["original_sizes"] for example in examples]
crop_top_lefts = [example["crop_top_lefts"] for example in examples]
prompt_embeds = torch.stack([torch.tensor(example["prompt_embeds"]) for example in examples])
pooled_prompt_embeds = torch.stack([torch.tensor(example["pooled_prompt_embeds"]) for example in examples])
rm_input_ids = torch.stack([torch.tensor(example["rm_input_ids"]) for example in examples])
rm_attention_mask = torch.stack([torch.tensor(example["rm_attention_mask"]) for example in examples])
rm_input_ids = rm_input_ids.view(-1, rm_input_ids.shape[-1])
rm_attention_mask = rm_attention_mask.view(-1, rm_attention_mask.shape[-1])
ids = [example[id_column] for example in examples]
return {
"model_input": model_input,
"prompt_embeds": prompt_embeds,
"pooled_prompt_embeds": pooled_prompt_embeds,
"original_sizes": original_sizes,
"crop_top_lefts": crop_top_lefts,
"rm_input_ids": rm_input_ids,
"rm_attention_mask": rm_attention_mask,
"ids": ids,
}
# DataLoaders creation:
self.train_dataloader = torch.utils.data.DataLoader(
self.precomputed_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
self.num_update_steps_per_epoch = math.ceil(len(self.train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * self.num_update_steps_per_epoch
overrode_max_train_steps = True
self.lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=self.optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Prepare everything with our `self.accelerator`.
self.unet, self.optimizer, self.train_dataloader, self.lr_scheduler = self.accelerator.prepare(
self.unet, self.optimizer, self.train_dataloader, self.lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
self.num_update_steps_per_epoch = math.ceil(len(self.train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * self.num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / self.num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if self.accelerator.is_main_process:
from copy import deepcopy
cp_args = deepcopy(args)
# Delete 'validation_prompts' attribute as trackers cannot store list-valued variables
delattr(cp_args, "validation_prompts")
self.accelerator.init_trackers("text2image_refl_sdxl_lora", config=vars(cp_args))
self.accelerator.trackers[0].run.name = args.run_name
del cp_args
# time ids
def _compute_time_ids(self, resolution, original_size, crops_coords_top_left):
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
target_size = (resolution, resolution)
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.to(self.accelerator.device, dtype=self.weight_dtype)
return add_time_ids
# Function for unwrapping if torch.compile() was used in accelerate.
def _unwrap_model(self, model):
model = self.accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
def _pretrain_loss(self, args, batch) -> torch.Tensor:
# Sample noise that we'll add to the latents
model_input = batch["model_input"].to(self.accelerator.device)
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
timesteps = torch.randint(
0, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
)
# Add noise to the model input according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_model_input = self.noise_scheduler.add_noise(model_input, noise, timesteps)
add_time_ids = torch.cat(
[self._compute_time_ids(args.resolution, s, c) for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])]
)
# Predict the noise residual
unet_added_conditions = {"time_ids": add_time_ids}
prompt_embeds = batch["prompt_embeds"].to(self.accelerator.device)
pooled_prompt_embeds = batch["pooled_prompt_embeds"].to(self.accelerator.device)
unet_added_conditions.update({"text_embeds": pooled_prompt_embeds})
model_pred = self.unet(
noisy_model_input,
timesteps,
prompt_embeds,
added_cond_kwargs=unet_added_conditions,
return_dict=False,
)[0]
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(model_input, noise, timesteps)
elif self.noise_scheduler.config.prediction_type == "sample":
# We set the target to latents here, but the model_pred will return the noise sample prediction.
target = model_input
# We will have to subtract the noise residual from the prediction to get the target sample.
model_pred = model_pred - noise
else:
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
if args.snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
# This is discussed in Section 4.2 of the same paper.
snr = compute_snr(self.noise_scheduler, timesteps)
mse_loss_weights = torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(
dim=1
)[0]
if self.noise_scheduler.config.prediction_type == "epsilon":
mse_loss_weights = mse_loss_weights / snr
elif self.noise_scheduler.config.prediction_type == "v_prediction":
mse_loss_weights = mse_loss_weights / (snr + 1)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
# Backpropagate
self.accelerator.backward(loss)
if self.accelerator.sync_gradients:
params_to_clip = self.unet.parameters()
self.accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
self.optimizer.step()
self.lr_scheduler.step()
self.optimizer.zero_grad()
return loss