Skip to content

THU-ATOM/AIRFold

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

98 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AIRFold

Features:

  • Implementation based on microservices architecture
  • Launch all with one docker-compose up
  • Services run in isolated docker container
  • Submit tasks with RESTful API (FastAPI)
  • Separated task queues and concurrence control
  • Flower for monitoring the Celery tasks

Introduction

AIRFold is

Quick Start

Installation and running your first prediction

Please follow these steps:

  1. Install Docker.

  2. Clone this repository and cd into it.

    git clone https://github.com/health-air/AIRFold
    cd ./AIRFold
    docker-compose up
  3. Check the page:

Note: please change IP address and ports accordingly, they are specified in docker-compose.yml

Databases for AIRFold

Genomics and metagenomics sequence databases

Structure databases

Data structure

├── model_params (models and parameters for AlphaFold2, RoseTTAFold2, ect.)
├── bfd
├── blast_dbs
├── JGIclust
├── metaclust
├── mgnify
├── pdb70
├── pdb_mmcif
├── small_bfd
├── uniclust30
├── uniref30
└── uniref90

Third-party tools

MSA-based structure prediction

Single sequence-based structure prediction

Multiple sequence alignment generation

Multiple sequence alignment selection

Protein model quality assessment

Command for different functions

Multiple sequence alignment generation

```bash
python run_mode.py --input_path example.fasta --mode msa
```

Pretrained embedding generation

```bash
python run_mode.py --input_path example.fasta --mode feature
```

Protein contact map prediction

```bash
python run_mode.py --input_path example.fasta --mode disgram
```

Protein structure prediction

```bash
python run_mode.py --input_path example.fasta --mode pipline
```