Features:
- Implementation based on microservices architecture
- Launch all with one
docker-compose up
- Services run in isolated docker container
- Submit tasks with RESTful API (FastAPI)
- Separated task queues and concurrence control
- Flower for monitoring the Celery tasks
AIRFold is
Please follow these steps:
-
Install Docker.
- Install NVIDIA Container Toolkit for GPU support.
- Setup running Docker as a non-root user.
-
Clone this repository and
cd
into it.git clone https://github.com/health-air/AIRFold cd ./AIRFold docker-compose up
-
Check the page:
- Submit page: http://127.0.0.1
- FastAPI page: http://127.0.0.1:8081/docs
- Tasks monitor page (powered by flower): http://127.0.0.1:5555
Note: please change IP address and ports accordingly, they are specified in docker-compose.yml
Genomics and metagenomics sequence databases
- BFD,
- MGnify,
- UniRef90,
- NR database for BLAST,
- Genomics and metagenomics sequence databases for DeepMSA2,
- ColabFold dataset for MMseqs2,
- Small BFD sequence database
- Uniprot sequence database
Structure databases
Data structure
├── model_params (models and parameters for AlphaFold2, RoseTTAFold2, ect.)
├── bfd
├── blast_dbs
├── JGIclust
├── metaclust
├── mgnify
├── pdb70
├── pdb_mmcif
├── small_bfd
├── uniclust30
├── uniref30
└── uniref90
MSA-based structure prediction
Single sequence-based structure prediction
Multiple sequence alignment generation
Multiple sequence alignment selection
Protein model quality assessment
```bash
python run_mode.py --input_path example.fasta --mode msa
```
```bash
python run_mode.py --input_path example.fasta --mode feature
```
```bash
python run_mode.py --input_path example.fasta --mode disgram
```
```bash
python run_mode.py --input_path example.fasta --mode pipline
```