This system provides CryptoMiniSat, an advanced SAT solver. The system has 3
interfaces: command-line, C++ library and python. The command-line interface
takes a cnf as an
input in the DIMACS
format with the extension of XOR clauses. The C++ interface mimics this except
that it allows for a more efficient system, with assumptions and multiple
solve()
calls. A C compatible wrapper is also provided. The python interface provides
a high-level yet efficient API to use most of the C++ interface with ease.
To build and install, issue:
sudo apt-get install build-essential cmake
# not required but very useful
sudo apt-get install libzip-dev libboost-program-options-dev libm4ri-dev libsqlite3-dev
tar xzvf cryptominisat-version.tar.gz
cd cryptominisat-version
cmake .
make
sudo make install
sudo ldconfig
Once cryptominisat is installed, the binary is available under
/usr/local/bin/cryptominisat5
, the library shared library is available
under /usr/local/lib/libcryptominisat5.so
and the 3 header files are
available under /usr/local/include/cryptominisat5/
.You can uninstall
both by executing sudo make uninstall
.
You will need Vim for Windows to be installed, see the download website at http://www.vim.org/download.php/#pc This is because we need the "xxd" executable. Then you need to perform the following for Visual Studio 2015:
C:\> [ download cryptominisat-version.zip ]
C:\> unzip cryptominisat-version.zip
C:\> rename cryptominisat-version cms
C:\> cd cms
C:\cms> mkdir build
C:\cms> cd build
C:\cms\build> [ download http://sourceforge.net/projects/boost/files/boost/1.59.0/boost_1_59_0.zip ]
C:\cms\build> unzip boost_1_59_0.zip
C:\cms\build> mkdir boost_1_59_0_install
C:\cms\build> cd boost_1_59_0
C:\cms\build\boost_1_59_0> bootstrap.bat --with-libraries=program_options
C:\cms\build\boost_1_59_0> b2 --with-program_options address-model=64 toolset=msvc-14.0 variant=release link=static threading=multi runtime-link=static install --prefix="C:\cms\build\boost_1_59_0_install" > boost_install.out
C:\cms\build\boost_1_59_0> cd ..
C:\cms\build> git clone https://github.com/madler/zlib
C:\cms\build> cd zlib
C:\cms\build\zlib> git checkout v1.2.8
C:\cms\build\zlib> mkdir build
C:\cms\build\zlib> mkdir myinstall
C:\cms\build\zlib> cd build
C:\cms\build\zlib\build> cmake -G "Visual Studio 14 2015 Win64" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=C:\cms\build\zlib\myinstall ..
C:\cms\build\zlib\build> msbuild /t:Build /p:Configuration=Release /p:Platform="x64" zlib.sln
C:\cms\build\zlib\build> msbuild INSTALL.vcxproj
C:\cms\build> cd ..\..
C:\cms\build> cmake -G "Visual Studio 14 2015 Win64" -DCMAKE_BUILD_TYPE=Release -DSTATICCOMPILE=ON -DZLIB_ROOT=C:\cms\build\zlib\myinstall -DBOOST_ROOT=C:\cms\build\boost_1_59_0_install ..
C:\cms\build> cmake --build --config Release .
This should build the static Windows binary under C:\cms\build\Release\cryptominisat5.exe
.
Let's take the file:
p cnf 2 3
1 0
-2 0
-1 2 3 0
The files has 3 clauses and 2 variables, this is reflected in the header
p cnf 2 3
. Every clause is ended by '0'. The clauses say: 1 must be True, 2
must be False, and either 1 has to be False, 2 has to be True or 3 has to be
True. The only solution to this problem is:
cryptominisat5 --verb 0 file.cnf
s SATISFIABLE
v 1 -2 3 0
If the file had contained:
p cnf 2 4
1 0
-2 0
-3 0
-1 2 3 0
Then there is no solution and the solver returns s UNSATISFIABLE
.
The python module must be compiled as per:
sudo apt-get install build-essential cmake
sudo apt-get install libzip-dev libboost-program-options-dev libm4ri-dev libsqlite3-dev
sudo apt-get install python-setuptools python-dev
tar xzvf cryptominisat-version.tar.gz
cd cryptominisat-version
cmake .
make
sudo make install
sudo ldconfig
You can then use it as:
>>> from pycryptosat import Solver
>>> s = Solver()
>>> s.add_clause([1])
>>> s.add_clause([-2])
>>> s.add_clause([3])
>>> s.add_clause([-1, 2, 3])
>>> sat, solution = s.solve()
>>> print sat
True
>>> print solution
(None, True, False, True)
We can also try to assume any variable values for a single solver run:
>>> sat, solution = s.solve([-3])
>>> print sat
False
>>> print solution
None
>>> sat, solution = s.solve()
>>> print sat
True
>>> print solution
(None, True, False, True)
For more detailed usage instructions, please see the README.rst under the python
directory.
The library uses a variable numbering scheme that starts from 0. Since 0 cannot
be negated, the class Lit
is used as: Lit(variable_number, is_negated)
. As
such, the 1st CNF above would become:
#include <cryptominisat5/cryptominisat.h>
#include <assert.h>
#include <vector>
using std::vector;
using namespace CMSat;
int main()
{
SATSolver solver;
vector<Lit> clause;
//Let's use 4 threads
solver.set_num_threads(4);
//We need 3 variables
solver.new_vars(3);
//adds "1 0"
clause.push_back(Lit(0, false));
solver.add_clause(clause);
//adds "-2 0"
clause.clear();
clause.push_back(Lit(1, true));
solver.add_clause(clause);
//adds "-1 2 3 0"
clause.clear();
clause.push_back(Lit(0, true));
clause.push_back(Lit(1, false));
clause.push_back(Lit(2, false));
solver.add_clause(clause);
lbool ret = solver.solve();
assert(ret == l_True);
assert(solver.get_model()[0] == l_True);
assert(solver.get_model()[1] == l_False);
assert(solver.get_model()[2] == l_True);
std::cout
<< "Solution is: "
<< solver.get_model()[0]
<< ", " << solver.get_model()[1]
<< ", " << solver.get_model()[2]
<< std::endl;
return 0;
}
The library usage also allows for assumptions. We can add these lines just
before the return 0;
above:
vector<Lit> assumptions;
assumptions.push_back(Lit(2, true));
lbool ret = solver.solve(&assumptions);
assert(ret == l_False);
lbool ret = solver.solve();
assert(ret == l_True);
Since we assume that variabe 2 must be false, there is no solution. However, if we solve again, without the assumption, we get back the original solution. Assumptions allow us to assume certain literal values for a specific run but not all runs -- for all runs, we can simply add these assumptions as 1-long clauses.
To find multiple solutions to your problem, just run the solver in a loop and ban the previous solution found:
while(true) {
lbool ret = solver->solve();
if (ret != l_True) {
assert(ret == l_False);
//All solutions found.
exit(0);
}
//Use solution here. print it, for example.
//Banning found solution
vector<Lit> ban_solution;
for (uint32_t var = 0; var < solver->nVars(); var++) {
if (solver->get_model()[var] != l_Undef) {
ban_solution.push_back(
Lit(var, (solver->get_model()[var] == l_True)? true : false));
}
}
solver->add_clause(ban_solution);
}
The above loop will run as long as there are solutions. It is highly
suggested to only add into the new clause(bad_solutions
above) the
variables that are "important" or "main" to your problem. Variables that were
only used to translate the original problem into CNF should not be added.
This way, you will not get spurious solutions that don't differ in the main,
important variables.
Run cryptominisat5 as:
./cryptominisat5 -p1 input.cnf simplified.cnf
some_sat_solver simplified.cnf > output
./cryptominisat5 -p2 output
where some_sat_solver
is a SAT solver of your choice that outputs a solution in the format of:
s SATISFIABLE
v [solution] 0
or
s UNSATISFIABLE
You can tune the schedule of simplifications by issuing --sched "X,Y,Z..."
. The default schedule for preprocessing is:
handle-comps,scc-vrepl, cache-clean, cache-tryboth,sub-impl, intree-probe, probe,
sub-str-cls-with-bin, distill-cls, scc-vrepl, sub-impl,occ-backw-sub-str,
occ-xor, occ-clean-implicit, occ-bve, occ-bva, occ-gates,str-impl, cache-clean,
sub-str-cls-with-bin, distill-cls, scc-vrepl, sub-impl,str-impl, sub-impl,
sub-str-cls-with-bin, occ-backw-sub-str, occ-bve,check-cache-size, renumber
It is a good idea to put renumber
as late as possible, as it renumbers the variables for memory usage reduction.
For building with Gaussian Elimination, you need to build as per:
sudo apt-get install build-essential cmake
sudo apt-get install libzip-dev libboost-program-options-dev libm4ri-dev libsqlite3-dev
tar xzvf cryptominisat-version.tar.gz
cd cryptominisat-version
mkdir build && cd build
cmake -DUSE_GAUSS=ON ..
make
To use Gaussian elimination, provide a CNF with xors in it (either in CNF or XOR+CNF form) and tune the gaussian parameters. Use --hhelp
to find all the gaussian elimination options:
Gauss options:
--iterreduce arg (=1) Reduce iteratively the matrix that is updated.We
effectively are moving the start to the last
column updated
--maxmatrixrows arg (=3000) Set maximum no. of rows for gaussian matrix. Too
large matrixesshould bee discarded for reasons of
efficiency
--autodisablegauss arg (=1) Automatically disable gauss when performing badly
--minmatrixrows arg (=5) Set minimum no. of rows for gaussian matrix.
Normally, too smallmatrixes are discarded for
reasons of efficiency
--savematrix arg (=2) Save matrix every Nth decision level
--maxnummatrixes arg (=3) Maximum number of matrixes to treat.
For testing you will need the GIT checkout and build as per:
sudo apt-get install build-essential cmake
sudo apt-get install libzip-dev libboost-program-options-dev libm4ri-dev libsqlite3-dev
sudo apt-get install git python-pip python-setuptools python-dev
pip install pip
git clone https://github.com/msoos/cryptominisat.git
cd cryptominisat
git submodule update --init
mkdir build && cd build
cmake -DENABLE_TESTING=ON ..
make -j4
make test
sudo make install
sudo ldconfig
Build for test as per above, then:
sudo apt-get install valgrind
cd ../../
git clone https://github.com/msoos/drat-trim
cd drat-trim
make
sudo cp drat-trim2 /usr/local/bin/drat-trim
cd ..
git clone https://github.com/msoos/lingeling-ala
cd lingeling-ala
./configure
make
sudo cp lingeling /usr/local/bin/
cd ../cryptominisat/scripts/fuzz/
./fuzz_test.py
Please see under web/README.markdown for details. This is an experimental feature.
See src/cryptominisat_c.h.in for details. This is an experimental feature.