-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
173 lines (146 loc) · 5.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for logging and serialization"""
import os
import random
import time
import numpy as np
import torch
class Timers:
"""Group of timers."""
class Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.elapsed_ = 0.0
self.started_ = False
self.start_time = time.time()
def start(self):
"""Start the timer."""
#assert not self.started_, 'timer has already been started'
torch.cuda.synchronize()
self.start_time = time.time()
self.started_ = True
def stop(self):
"""Stop the timer."""
assert self.started_, 'timer is not started'
torch.cuda.synchronize()
self.elapsed_ += (time.time() - self.start_time)
self.started_ = False
def reset(self):
"""Reset timer."""
self.elapsed_ = 0.0
self.started_ = False
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self.elapsed_
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
def __init__(self):
self.timers = {}
def __call__(self, name):
if name not in self.timers:
self.timers[name] = self.Timer(name)
return self.timers[name]
def log(self, names, normalizer=1.0, reset=True):
"""Log a group of timers."""
assert normalizer > 0.0
string = 'time (ms)'
for name in names:
elapsed_time = self.timers[name].elapsed(
reset=reset) * 1000.0/ normalizer
string += ' | {}: {:.2f}'.format(name, elapsed_time)
print(string, flush=True)
def report_memory(name):
"""Simple GPU memory report."""
mega_bytes = 1024.0 * 1024.0
string = name + ' memory (MB)'
string += ' | allocated: {}'.format(
torch.cuda.memory_allocated() / mega_bytes)
string += ' | max allocated: {}'.format(
torch.cuda.max_memory_allocated() / mega_bytes)
string += ' | cached: {}'.format(torch.cuda.memory_cached() / mega_bytes)
string += ' | max cached: {}'.format(
torch.cuda.max_memory_cached()/ mega_bytes)
print(string, flush=True)
def load_checkpoint(model, optimizer, lr_scheduler, args):
"""Load a model checkpoint."""
checkpoint_path = args.load
model_path = checkpoint_path
model_sd = torch.load(model_path, map_location='cpu')
epoch = model_sd['epoch']
model.load_state_dict(model_sd['sd'])
checkpoint_path = os.path.dirname(checkpoint_path)
if args.load_optim:
optim_path = os.path.join(checkpoint_path, 'optim.pt')
optim_sd, lr_sd = torch.load(optim_path, map_location='cpu')
optimizer.load_state_dict(optim_sd)
lr_scheduler.load_state_dict(lr_sd)
rng_path = None
if args.load_rng:
rng_path = os.path.join(checkpoint_path, 'rng.pt')
if args.load_all_rng:
rng_path = os.path.join(checkpoint_path,
'rng.%d.pt'%(torch.distributed.get_rank()))
if rng_path is not None:
rng_state = torch.load(rng_path)
torch.cuda.set_rng_state(rng_state[0])
torch.set_rng_state(rng_state[1])
np.random.set_state(rng_state[2])
random.setstate(rng_state[3])
return epoch
def save_checkpoint(model_suffix, epoch, model, optimizer, lr_scheduler, args):
"""Save a model checkpoint."""
model_path = os.path.join(args.save, model_suffix)
checkpoint_dir = os.path.dirname(model_path)
rng_state = (torch.cuda.get_rng_state(),
torch.get_rng_state(),
np.random.get_state(),
random.getstate())
if not (torch.distributed.is_initialized() and \
torch.distributed.get_rank() > 0):
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
sd = {'sd': model.state_dict()}
sd['epoch'] = epoch
torch.save(sd, model_path)
print('saved', model_path)
if args.save_optim:
optim_path = os.path.join(checkpoint_dir, 'optim.pt')
torch.save((optimizer.state_dict(),
lr_scheduler.state_dict()), optim_path)
print('saved', optim_path)
if args.save_rng:
rng_path = os.path.join(checkpoint_dir, 'rng.pt')
torch.save(rng_state, rng_path)
print('saved', rng_path)
else:
while not os.path.exists(checkpoint_dir):
time.sleep(1)
if args.save_all_rng:
rng_path = os.path.join(checkpoint_dir,
'rng.%d.pt'%(torch.distributed.get_rank()))
torch.save(rng_state, rng_path)
print('saved', rng_path)