-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelpers.py
522 lines (466 loc) · 16.9 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import copy
import json
import logging
import math
import os
import random
from datetime import datetime
from functools import partial
from math import ceil
from pathlib import Path
import numpy as np
import pandas as pd
import scipy.sparse as sp
import torch
from geopy import distance
from shapely.geometry import LineString
from sklearn.preprocessing import LabelEncoder
from torch.autograd import Variable
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset, random_split
from tqdm import tqdm
params_map = {
"BJ_Taxi": {
"na_value": {
"lanes": "unknown",
"bridge": "no",
"access": "unknown",
"maxspeed": 120,
"tunnel": "no",
"junction": "no",
"width": 100,
},
"norm_dict": {"length": 2, "maxspeed": 6, "width": 9},
"onehot_list": [
"highway",
"oneway",
"lanes",
"bridge",
"access",
"tunnel",
"junction",
],
},
"Porto_Taxi": {
"na_value": {
"lanes": "unknown",
"bridge": "no",
"maxspeed": 120,
"tunnel": "no",
},
"norm_dict": {"length": 2, "maxspeed": 6},
"onehot_list": ["highway", "oneway", "lanes", "bridge", "tunnel"],
},
"Shanghai_Taxi": {
"na_value": {
"lanes": "unknown",
"bridge": "no",
"access": "unknown",
"maxspeed": 120,
"tunnel": "no",
"junction": "no",
"width": 100,
},
"norm_dict": {"length": 2, "maxspeed": 6, "width": 9},
"onehot_list": [
"highway",
"oneway",
"lanes",
"bridge",
"access",
"tunnel",
"junction",
],
},
"Chengdu_Taxi": {
"na_value": {
"lanes": "unknown",
"bridge": "no",
"access": "unknown",
"maxspeed": 120,
"tunnel": "no",
"junction": "no",
"width": 100,
},
"norm_dict": {"length": 2, "maxspeed": 6, "width": 9},
"onehot_list": [
"highway",
"oneway",
"lanes",
"bridge",
"access",
"tunnel",
"junction",
],
},
}
def str2bool(s):
if isinstance(s, bool):
return s
if s.lower() in ("yes", "true"):
return True
elif s.lower() in ("no", "false"):
return False
else:
print("bool value expected.")
class MapManager(object):
def __init__(self, dataset_name):
self.dataset_name = dataset_name
if self.dataset_name == "Xian":
self.lon_0 = 108.8093988
self.lon_1 = 109.0499449
self.lat_0 = 34.17026046
self.lat_1 = 34.29639324
self.img_unit = 0.005 # grid size like 0.42 km * 0.55 km
self.img_width = (
math.ceil((self.lon_1 - self.lon_0) / self.img_unit) + 1
) # width of image
self.img_height = (
math.ceil((self.lat_1 - self.lat_0) / self.img_unit) + 1
) # height of image
elif self.dataset_name == "BJ_Taxi":
self.lon_0 = 116.25
self.lat_0 = 39.79
self.lon_range = 0.2507 # span of longitude
self.lat_range = 0.21 # span of latitude
self.img_unit = 0.005 # grid size like 0.42 km * 0.55 km
self.img_width = math.ceil(self.lon_range / self.img_unit) + 1
self.img_height = math.ceil(self.lat_range / self.img_unit) + 1
self.road_num = 37684
self.block_size = 60
self.min_len = 5
elif self.dataset_name == "Porto_Taxi":
self.lon_0 = -8.6887
self.lat_0 = 41.1405
self.lon_range = 0.133
self.lat_range = 0.046
self.img_unit = 0.005
self.img_width = math.ceil(self.lon_range / self.img_unit) + 1
self.img_height = math.ceil(self.lat_range / self.img_unit) + 1
self.road_num = 10904
self.block_size = 173 # 276
self.min_len = 5
elif self.dataset_name == "Shanghai_Taxi":
self.lon_0 = 120.8579
self.lat_0 = 30.6988
self.lon_range = 1.062
self.lat_range = 1.150
self.img_unit = 0.005
self.img_width = math.ceil(self.lon_range / self.img_unit) + 1
self.img_height = math.ceil(self.lat_range / self.img_unit) + 1
self.road_num = 39952
self.block_size = 157
self.min_len = 5
elif self.dataset_name == "Chengdu_Taxi":
self.lon_0 = 103.4784
self.lat_0 = 30.2945
self.lon_range = 1.062
self.lat_range = 0.705
self.img_unit = 0.005
self.img_width = math.ceil(self.lon_range / self.img_unit) + 1
self.img_height = math.ceil(self.lat_range / self.img_unit) + 1
self.road_num = 14201
self.block_size = 119
self.min_len = 5
else:
raise NotImplementedError()
def gps2grid(self, lon, lat):
x = math.floor(abs(lon - self.lon_0) / self.img_unit)
y = math.floor((lat - self.lat_0) / self.img_unit)
assert 0 <= x <= self.img_width
assert 0 <= y <= self.img_height
return x, y
class ListDataset(Dataset):
def __init__(self, data):
"""
data: list
"""
self.data = data
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return len(self.data)
def set_random_seed(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def set_logger(log_dir="./logs/", log_prefix=""):
Path(log_dir).mkdir(parents=True, exist_ok=True)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s %(levelname)-8s %(message)s", "%Y-%m-%d %H:%M:%S"
)
sh = logging.StreamHandler()
sh.setLevel(logging.INFO)
sh.setFormatter(formatter)
logger.addHandler(sh)
ts = datetime.now().strftime("%Y-%m-%d-%H:%M:%S")
fh = logging.FileHandler(f"{log_dir}/{log_prefix}-{ts}.log")
fh.setLevel(logging.INFO)
fh.setFormatter(formatter)
logger.addHandler(fh)
return logger
def encode_time(timestamp):
if "T" in timestamp:
time = datetime.strptime(timestamp, "%Y-%m-%dT%H:%M:%SZ")
else:
time = datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S")
if time.weekday() == 5 or time.weekday() == 6:
return time.hour * 60 + time.minute + 1440
else:
return time.hour * 60 + time.minute
def read_rid_gps(data):
rid_gps_file = f"./data/{data}/rid_gps.json"
if os.path.exists(rid_gps_file):
with open(rid_gps_file, "r") as f:
rid_gps = json.load(f)
else:
rid_gps = {}
rid_info = pd.read_csv(f"./data/{data}/roadmap.geo")
for index, row in tqdm(
rid_info.iterrows(), total=rid_info.shape[0], desc="cal road gps dict"
):
rid = row["geo_id"]
coordinate = eval(row["coordinates"])
road_line = LineString(coordinates=coordinate)
center_coord = road_line.centroid
center_lon, center_lat = center_coord.x, center_coord.y
rid_gps[str(rid)] = (center_lon, center_lat)
with open(rid_gps_file, "w") as f:
json.dump(rid_gps, f)
return rid_gps
def read_start_t_probs(data):
split = "tra"
prob_file = f"./data/{data}/start_t_probs.pt"
if os.path.exists(prob_file):
probs = torch.load(prob_file)
else:
df = pd.read_csv(f"./data/{data}/traj_{split}.csv")
df["start_t"] = df["time_list"].apply(lambda x: encode_time(x.split(",")[0]))
res = df["start_t"].value_counts()
vals, cnts = res.index, res.values
probs = np.zeros(2880)
probs[vals] = cnts
probs = torch.from_numpy(probs / probs.sum())
torch.save(probs, prob_file)
return probs
def read_od_pair_distribution(data):
split = "tra"
od_pair_file = f"./data/{data}/od_and_probs_float.pt"
if os.path.exists(od_pair_file):
od_and_probs_float = torch.load(od_pair_file)
else:
df = pd.read_csv(f"./data/{data}/traj_{split}.csv")
df["origin"] = df["rid_list"].apply(lambda x: int(x.split(",")[0]))
df["destination"] = df["rid_list"].apply(lambda x: int(x.split(",")[-1]))
od_cnt_df = (
df.groupby(["origin", "destination"])
.count()
.sort_values("mm_id", ascending=False)
.reset_index()
)
od_and_probs_float = torch.tensor(
od_cnt_df[["origin", "destination", "mm_id"]].values
).float()
# od_and_probs_float[:, -1] = od_and_probs_float[:, -1]/od_and_probs_float[:, -1].sum()
torch.save(od_and_probs_float, od_pair_file)
return od_and_probs_float
def read_adjcent_file(data):
adjacent_np_file = f"./data/{data}/adjacent_mx.npz"
map_manager = MapManager(data)
if os.path.exists(adjacent_np_file):
adj_mx = sp.load_npz(adjacent_np_file)
else:
road_rel = pd.read_csv(f"./data/{data}/roadmap.rel")
# construct adjcent matrix with sparse matrix
adj_row = []
adj_col = []
adj_data = []
adj_set = set()
for index, row in tqdm(
road_rel.iterrows(), total=road_rel.shape[0], desc="cal adj mx"
):
f_id = row["origin_id"]
t_id = row["destination_id"]
if (f_id, t_id) not in adj_set:
adj_set.add((f_id, t_id))
adj_row.append(f_id)
adj_col.append(t_id)
adj_data.append(1.0)
num = map_manager.road_num
adj_mx = sp.coo_matrix((adj_data, (adj_row, adj_col)), shape=(num, num))
sp.save_npz(adjacent_np_file, adj_mx)
return adj_mx
def get_max_from_str(x):
if type(x) is int:
return x
elif isinstance(eval(x), list):
return max(list(map(int, eval(x))))
elif isinstance(eval(x), int):
return int(x)
def read_node_feature_file(data="", device=""):
node_feature_file = f"./data/{data}/node_feature.pt"
if os.path.exists(node_feature_file):
node_features = torch.load(node_feature_file, map_location="cpu").to(device)
else:
road_info = pd.read_csv(f"./data/{data}/roadmap.geo")
vocab_size = road_info["geo_id"].max()
assert road_info["geo_id"].max() + 1 == len(road_info)
na_value = params_map[data]["na_value"]
encode_feature = ["highway", "oneway", "length"] + list(na_value.keys())
node_features = road_info[encode_feature]
node_features = node_features.fillna(na_value)
if data in ["Shanghai_Taxi"]:
node_features["maxspeed"] = node_features["maxspeed"].apply(
lambda x: get_max_from_str(x)
)
node_features["width"] = node_features["maxspeed"].apply(
lambda x: get_max_from_str(x)
)
# normalization for continuous attribution
norm_dict = params_map[data]["norm_dict"]
for k, v in norm_dict.items():
d = node_features[k]
min_ = d.min()
max_ = d.max()
dnew = (d - min_) / (max_ - min_)
node_features = node_features.drop(labels=k, axis=1)
node_features.insert(v, k, dnew)
# one-hot encoding for discrete attribution
onehot_list = params_map[data]["onehot_list"]
label_encoder = LabelEncoder()
for label in onehot_list:
encoded_label = label_encoder.fit_transform(road_info[label])
node_features["{}_encoded".format(label)] = encoded_label
node_features = node_features.drop(columns=onehot_list)
with open(f"./data/{data}/rid_gps.json", "r") as f:
rid_gps = json.load(f)
lon_grid = [] # x
lat_grid = [] # y
total_road = node_features.shape[0]
map_manager = MapManager(dataset_name=data)
for i in range(total_road):
gps = rid_gps[str(i)]
x, y = map_manager.gps2grid(lon=gps[0], lat=gps[1])
lon_grid.append(x)
lat_grid.append(y)
node_features["lon_grid"] = lon_grid
node_features["lat_grid"] = lat_grid
node_features = node_features.values
# cache of node_features
node_features = torch.FloatTensor(node_features)
torch.save(node_features, node_feature_file)
node_features = node_features.to(device)
vocab_size = len(node_features)
return node_features, vocab_size
def read_road2grid(data, map_manager):
road_gps = read_rid_gps(data)
road2grid_file = f"./data/{data}/road2grid.json"
if not os.path.exists(road2grid_file):
road2grid = {}
for road in road_gps:
gps = road_gps[road]
x = math.ceil((gps[0] - map_manager.lon_0) / map_manager.img_unit)
y = math.ceil((gps[1] - map_manager.lat_0) / map_manager.img_unit)
road2grid[road] = (x, y)
with open(road2grid_file, "w") as f:
json.dump(road2grid, f)
else:
with open(road2grid_file, "r") as f:
road2grid = json.load(f)
return road2grid
def add_eos_and_pad_seq(seqs, EOS=None, mode="no-eos"):
max_seq = 300
valid_len = [len(seq) for seq in seqs]
for i, seq in enumerate(seqs):
if valid_len[i] < max_seq:
if mode == "add-eos":
seq.append(EOS)
valid_len[i] += 1
if valid_len[i] < max_seq:
seq.extend([0] * (max_seq - valid_len[i]))
else:
seq.extend([0] * (max_seq - valid_len[i]))
assert len(seq) == max_seq
return seqs, valid_len
def my_collate_fn(indices, adj, dist_geo, device):
trace_loc = []
trace_tim = []
for i in indices:
trace_loc.append(torch.tensor(i[0]))
trace_tim.append(torch.tensor(i[1]))
trace_loc = pad_sequence(trace_loc, batch_first=True, padding_value=0)
trace_tim = pad_sequence(trace_tim, batch_first=True, padding_value=-1).float()
x_seq = trace_loc[:, :-1].clone()
y_seq = trace_loc[:, 1:].clone()
mask = trace_tim[:, 1:] == -1
y_seq[mask] = -1
des = torch.tensor([row[row!=-1][-1] for row in y_seq]).to(y_seq)
des_seq = des.unsqueeze(1).repeat(1, y_seq.shape[-1])
return [
x_seq.to(device),
y_seq.to(device),
trace_tim.to(device),
torch.from_numpy(adj[x_seq]).to(device),
torch.from_numpy(dist_geo[x_seq]).to(device),
torch.from_numpy(dist_geo[des_seq]).to(device),
]
def generate_data_loader(
city, split, batch_size=None, adj=None, dist=None, device=None
):
if split == "tes":
data = []
df = pd.read_csv(f"./data/{city}/traj_{split}.csv")
for index, row in tqdm(
df.iterrows(), total=df.shape[0], desc="generate test data"
):
traj_loc = list(map(int, row["rid_list"].split(",")))
traj_tim = list(map(encode_time, row["time_list"].split(",")))
data.append([traj_loc, traj_tim])
return data
elif split == "tra_and_val":
data_tra = []
df_tra = pd.read_csv(f"./data/{city}/traj_tra.csv")
for index, row in tqdm(
df_tra.iterrows(),
total=df_tra.shape[0],
desc="generate training data loader",
):
traj_loc = list(map(int, row["rid_list"].split(",")))
traj_tim = list(map(encode_time, row["time_list"].split(",")))
data_tra.append([traj_loc, traj_tim])
tra_dataset = ListDataset(data_tra)
data_val = []
df_val = pd.read_csv(f"./data/{city}/traj_val.csv")
for index, row in tqdm(
df_val.iterrows(), total=df_val.shape[0], desc="generate valid data loader"
):
traj_loc = list(map(int, row["rid_list"].split(",")))
traj_tim = list(map(encode_time, row["time_list"].split(",")))
data_val.append([traj_loc, traj_tim])
val_dataset = ListDataset(data_val)
return DataLoader(
tra_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=lambda b: my_collate_fn(b, adj, dist, device),
), DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=lambda b: my_collate_fn(b, adj, dist, device),
)
else:
print("Unvalid split name!")
def read_data_from_file(fp):
path = []
with open(fp, 'r') as f:
lines = f.readlines()
for line in lines:
pois = line.split(' ')
path.append([int(poi) for poi in pois])
return path