-
Notifications
You must be signed in to change notification settings - Fork 11
/
updates.py
231 lines (178 loc) · 7.3 KB
/
updates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import theano
import theano.tensor as T
import numpy as np
from theano_utils import shared0s, floatX, sharedX
from ops import l2norm
def clip_norm(g, c, n):
if c > 0:
g = T.switch(T.ge(n, c), g*c/n, g)
return g
def clip_norms(gs, c):
norm = T.sqrt(sum([T.sum(g**2) for g in gs]))
return [clip_norm(g, c, norm) for g in gs]
class Regularizer(object):
def __init__(self, l1=0., l2=0., maxnorm=0., l2norm=False, frobnorm=False):
self.__dict__.update(locals())
def max_norm(self, p, maxnorm):
if maxnorm > 0:
norms = T.sqrt(T.sum(T.sqr(p), axis=0))
desired = T.clip(norms, 0, maxnorm)
p = p * (desired/ (1e-7 + norms))
return p
def l2_norm(self, p):
return p/l2norm(p, axis=0)
def frob_norm(self, p, nrows):
return (p/T.sqrt(T.sum(T.sqr(p))))*T.sqrt(nrows)
def gradient_regularize(self, p, g):
g += p * self.l2
g += T.sgn(p) * self.l1
return g
def weight_regularize(self, p):
p = self.max_norm(p, self.maxnorm)
if self.l2norm:
p = self.l2_norm(p)
if self.frobnorm > 0:
p = self.frob_norm(p, self.frobnorm)
return p
class Update(object):
def __init__(self, regularizer=Regularizer(), clipnorm=0.):
self.__dict__.update(locals())
def __call__(self, params, grads):
raise NotImplementedError
class SGD(Update):
def __init__(self, lr=0.01, *args, **kwargs):
Update.__init__(self, *args, **kwargs)
self.__dict__.update(locals())
def __call__(self, params, cost):
updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, self.clipnorm)
for p,g in zip(params,grads):
g = self.regularizer.gradient_regularize(p, g)
updated_p = p - self.lr * g
updated_p = self.regularizer.weight_regularize(updated_p)
updates.append((p, updated_p))
return updates
class Momentum(Update):
def __init__(self, lr=0.01, momentum=0.9, *args, **kwargs):
Update.__init__(self, *args, **kwargs)
self.__dict__.update(locals())
def __call__(self, params, cost):
updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, self.clipnorm)
for p,g in zip(params,grads):
g = self.regularizer.gradient_regularize(p, g)
m = theano.shared(p.get_value() * 0.)
v = (self.momentum * m) - (self.lr * g)
updates.append((m, v))
updated_p = p + v
updated_p = self.regularizer.weight_regularize(updated_p)
updates.append((p, updated_p))
return updates
class NAG(Update):
def __init__(self, lr=0.01, momentum=0.9, *args, **kwargs):
Update.__init__(self, *args, **kwargs)
self.__dict__.update(locals())
def __call__(self, params, cost):
updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, self.clipnorm)
for p, g in zip(params, grads):
g = self.regularizer.gradient_regularize(p, g)
m = theano.shared(p.get_value() * 0.)
v = (self.momentum * m) - (self.lr * g)
updated_p = p + self.momentum * v - self.lr * g
updated_p = self.regularizer.weight_regularize(updated_p)
updates.append((m,v))
updates.append((p, updated_p))
return updates
class RMSprop(Update):
def __init__(self, lr=0.001, rho=0.9, epsilon=1e-6, *args, **kwargs):
Update.__init__(self, *args, **kwargs)
self.__dict__.update(locals())
def __call__(self, params, cost):
updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, self.clipnorm)
for p,g in zip(params,grads):
g = self.regularizer.gradient_regularize(p, g)
acc = theano.shared(p.get_value() * 0.)
acc_new = self.rho * acc + (1 - self.rho) * g ** 2
updates.append((acc, acc_new))
updated_p = p - self.lr * (g / T.sqrt(acc_new + self.epsilon))
updated_p = self.regularizer.weight_regularize(updated_p)
updates.append((p, updated_p))
return updates
class Adam(Update):
def __init__(self, lr=0.001, b1=0.9, b2=0.999, e=1e-8, l=1-1e-8, *args, **kwargs):
Update.__init__(self, *args, **kwargs)
self.__dict__.update(locals())
def __call__(self, params, cost):
updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, self.clipnorm)
t = theano.shared(floatX(1.))
b1_t = self.b1*self.l**(t-1)
for p, g in zip(params, grads):
g = self.regularizer.gradient_regularize(p, g)
m = theano.shared(p.get_value() * 0.)
v = theano.shared(p.get_value() * 0.)
m_t = b1_t*m + (1 - b1_t)*g
v_t = self.b2*v + (1 - self.b2)*g**2
m_c = m_t / (1-self.b1**t)
v_c = v_t / (1-self.b2**t)
p_t = p - (self.lr * m_c) / (T.sqrt(v_c) + self.e)
p_t = self.regularizer.weight_regularize(p_t)
updates.append((m, m_t))
updates.append((v, v_t))
updates.append((p, p_t) )
updates.append((t, t + 1.))
return updates
class Adagrad(Update):
def __init__(self, lr=0.01, epsilon=1e-6, *args, **kwargs):
Update.__init__(self, *args, **kwargs)
self.__dict__.update(locals())
def __call__(self, params, cost):
updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, self.clipnorm)
for p,g in zip(params,grads):
g = self.regularizer.gradient_regularize(p, g)
acc = theano.shared(p.get_value() * 0.)
acc_t = acc + g ** 2
updates.append((acc, acc_t))
p_t = p - (self.lr / T.sqrt(acc_t + self.epsilon)) * g
p_t = self.regularizer.weight_regularize(p_t)
updates.append((p, p_t))
return updates
class Adadelta(Update):
def __init__(self, lr=1., rho=0.95, epsilon=1e-6, *args, **kwargs):
Update.__init__(self, *args, **kwargs)
self.__dict__.update(locals())
def __call__(self, params, cost):
updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, self.clipnorm)
for p,g in zip(params,grads):
g = self.regularizer.gradient_regularize(p, g)
acc = theano.shared(p.get_value() * 0.)
acc_delta = theano.shared(p.get_value() * 0.)
acc_new = self.rho * acc + (1 - self.rho) * g ** 2
updates.append((acc,acc_new))
update = g * T.sqrt(acc_delta + self.epsilon) / T.sqrt(acc_new + self.epsilon)
updated_p = p - self.lr * update
updated_p = self.regularizer.weight_regularize(updated_p)
updates.append((p, updated_p))
acc_delta_new = self.rho * acc_delta + (1 - self.rho) * update ** 2
updates.append((acc_delta,acc_delta_new))
return updates
class NoUpdate(Update):
def __init__(self, lr=0.01, momentum=0.9, *args, **kwargs):
Update.__init__(self, *args, **kwargs)
self.__dict__.update(locals())
def __call__(self, params, cost):
updates = []
for p in params:
updates.append((p, p))
return updates