This library provide numerical result of s-wave Caroli-de Gennes-Matricon mode (CdGM mode) at
It is known that there is low-energy excitation levels inside the s-wave vortex core in the superconductor. These states are got by solving following Bogoliubov-de Gennes equation(BdG eq) self-consistently.
$$ \left[-\frac{1}{2k_{F}\xi_{0}}\nabla^{2}-\mu\right]\mathcal{U}{q}(\boldsymbol{r})+\Delta(\boldsymbol{r})\mathcal{V}{q}(\boldsymbol{r}) = E_{q}\mathcal{U}_{q}(\boldsymbol{r}) $$
$$
\left[\frac{1}{2k_{F}\xi_{0}}\nabla^{2}+\mu\right]\mathcal{V}{q}(\boldsymbol{r})+\Delta^{*}(\boldsymbol{r})\mathcal{U}{q}(\boldsymbol{r}) = E_{q}\mathcal{V}_{q}(\boldsymbol{r})
$$
$$ \Delta(\boldsymbol{r})=g\sum_{E_{q}\leq E_{\mathrm{c}}} \mathcal{U}{q}(r)\mathcal{V}{q}^{*}(r)[1-2f(E_{q})] $$
Here, BdG eq is rewritten in dimensionless form using Pippard length
$$ \begin{bmatrix} \mathcal{U}{n}(r, \theta) \ \mathcal{V}{n}(r, \theta) \end{bmatrix} =\frac{1}{\sqrt{2\pi}} \begin{bmatrix} u_{n}(r)e^{in\theta} \ v_{n}(r)e^{i(n + 1)\theta} \end{bmatrix} $$
Here,