Skip to content

Latest commit

 

History

History
 
 

torch_compile

Torch 2.0 Compile benchmarks on RLlib

Torch 2.0 comes with the new torch.compile() API, which leverages torch dynamo under the hood to JIT-compile wrapped code. We integrate torch.compile() with RLlib in the context of RLModules and Learners.

We have integrated this feature with RLModules. You can set the backend and mode via framework() API on an AlgorithmConfig object. Alternatively, you can compile the RLModule directly during stand-alone usage such as inference.

Benchmarks

We conducted a comperhensive benchmark with this feature.

Inference

For the benchmarking metric, we compute the inverse of the time it takes to run forward_exploration() of the RLModule. We have conducted this benchmark on the default implementation of PPO RLModule under different hardware settings, torch versions, dynamo backends and modes, as well as different batch sizes. Here is a high-level summary of our findings:

Hardware PyTorch Version Speedup (%) Backend + Mode
CPU 2.0.1 33.92 ipex + default
CPU 2.1.0 nightly x ipex + default
T4 2.0.1 14.05 inductor + reduce-overhead
T4 2.1.0 nightly 15.01 inductor + reduce-overhead
V100 2.0.1 92.43 inductor + reduce-overhead
V100 2.1.0 nightly 85.71 inductor + reduce-overhead
A100 2.0.1 x inductor + reduce-overhead
A100 2.1.0 nightly 156.66 inductor + reduce-overhead

For detailed benchmarks, checkout this google doc. Here is the benchmarking code: ./run_inference_bm.py. You can run the benchmark yourself as well:

./run_all_inference_bms.sh -bs <batch_size> --backend <dynamo_backend> --mode <dynamo_mode>

Some meta level comments

  1. The performance improvement depends on many factors, including the neural network architecture used, the batch size during sampling, the backend, the mode, the torch version, and many other things. The best way to optimize this is to first get the non-compiled workload learning and then do a hyper-parameter tuning on torch compile parameters on different hardware.

  2. For CPU inference use the recommended inference only backends: ipex and onnxrt.

  3. The speedups are more significant on more modern architectures such as A100s compared to older ones like T4.

  4. Torch compile is still evolving. We noticed significant differences between the 2.0.1 release and the 2.1 nightly release. Therefore, it is important to take this into account during benchmarking your own workloads.

Exploration

In RLlib, you can now set the configuration so that the compiled module is used during sampling of an RL agent training process. By default, the rollout workers run on CPU, therefore it is recommended to use the ipex or onnxrt backend. Having said that, you can still choose to run the sampling part on GPUs as well by setting num_gpus_per_worker in which case other backends can be used as well.

config.framework(
    "torch",
    torch_compile_worker=True,
    torch_compile_worker_dynamo_backend="ipex"
    torch_compile_worker_dynamo_mode="default",
)

This benchmark script runs PPO algorithm with the default model architecture for Atari-Breakout game. It will run the training for n iterations for both compiled and non-compiled RLModules and reports the speedup. Note that negative speedup values mean a slowdown when you compile the module.

To run the benchmark script, you need a ray cluster comprised of at least 129 CPUs (2x64 + 1) and 2 GPUs. If this is not accessible to you, you can change the number of sampling workers and batch size to make the requirements smaller.

python ./run_ppo_with_inference_bm.py --backend <backend> --mode <mode>

Here is a summary of results:

Backend Mode Speedup (%)
onnxrt default -72.34
onnxrt reduce-overhead -72.72
ipex default 11.71
ipex reduce-overhead 11.31
ipex max-autotune 12.88

As you can see, onnxrt does not gain any speedups in the setup we tested (in fact it slows the workload down by 70%) while the ipex provides ~10% speedup. If we change the model architecture, these numbers may change. So it is very important to fix the architecture first and then search for the fastest training settings.

Appendix

Here is a complete view of the experiments done in this benchmark.

T4, torch=2.0.1+cu118, backend=cudagraphs, mode=default


batch_size no compile throughput compiled throughput Speedup
1 1416.944392 1070.498744 -0.2445019368
4 1229.927594 976.0135413 -0.2064463419
16 688.3866398 561.2428232 -0.1846982629

T4, torch=2.0.1+cu118, backend=cudagraphs, mode=reduce-overhead


Batch Size No Compile Throughput Compiled Throughput Speedup
1 1444.352012 1061.51702 -0.2650565712
4 1232.765904 971.4321448 -0.211989769
16 684.6763992 558.6741867 -0.1840317742

T4, torch=2.0.1+cu118, backend=cudagraphs, mode=max-autotune


Batch Size No Compile Throughput Compiled Throughput Speedup
1 1450.048725 1073.293067 -0.259822757
4 1233.033495 970.9492169 -0.2125524402
16 680.6054645 555.565431 -0.1837188211

T4, torch=2.0.1+cu118, backend=inductor, mode=default


Batch Size No Compile Throughput Compiled Throughput Speedup
1 1407.150602 1388.549445 -0.01321902363
4 1125.619106 1115.115648 -0.009331271877
16 685.8785968 683.0003853 -0.00419638632

T4, torch=2.0.1+cu118, backend=inductor, mode=reduce-overhead


Batch Size No Compile Throughput Compiled Throughput Speedup
1 1436.253369 1638.012412 0.1404759401
4 1220.94159 1418.971087 0.1621940798
16 681.6297995 693.904727 0.01800820267

T4, torch=2.0.1+cu118, backend=inductor, mode=reduce-overhead


Batch Size No Compile Throughput Compiled Throughput Speedup
1 1436.253369 1638.012412 0.1404759401
4 1220.94159 1418.971087 0.1621940798
16 681.6297995 693.904727 0.01800820267

T4, torch=2.0.1+cu118, backend=inductor, mode=max-autotune


Batch Size No Compile Throughput Compiled Throughput Speedup
1 1387.162631 1610.492709 0.1609977612
4 1229.153562 1444.786043 0.1754316859
16 686.7980746 705.0833599 0.02662396128

T4, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode=default


Similar to torch 2.0 numbers.

T4, torch=2.1.0.dev20230614+cu118, mode=reduce-overhead


Similar to torch 2.0 numbers.

T4, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode=max-autotune


Similar to torch 2.0 numbers.

T4, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=default


Similar to torch 2.0 numbers.

T4, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=reduce-overhead


Similar to torch 2.0 numbers.

T4, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=reduce-overhead


Batch Size No Compile Throughput Compiled Throughput Speedup
1 1415.243828 1627.604089 0.1500520668
4 1205.818761 1363.914143 0.1311104022
16 664.9148261 684.8039204 0.02991224362

T4, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=max-autotune


Similar to torch 2.0 numbers.

V100, torch=2.0.1+cu118, backend=cudagraphs, mode=default


batch_size no compile throughput compiled throughput Speedup
1 940.8116683 1455.383784 0.5469448698
4 929.174622 1176.58136 0.2662650618
16 893.4697611 1307.312612 0.4631861861

V100, torch=2.0.1+cu118, backend=cudagraphs, mode=reduce-overhead


batch_size no compile throughput compiled throughput Speedup
1 902.5531645 1411.217542 0.5635838391
4 946.2815455 1166.741298 0.2329747987
16 876.6270322 1316.121961 0.5013476799

V100, torch=2.0.1+cu118, backend=cudagraphs, mode=max-autotune


batch_size no compile throughput compiled throughput Speedup
1 899.2288182 1423.560527 0.5830904196
4 934.5095328 1176.58136 0.2590362312
16 888.5919127 1314.350585 0.4791385862

V100, torch=2.0.1+cu118, backend=inductor, mode=default


Batch Size No Compile Throughput Compiled Throughput Speedup
1 1407.150602 1388.549445 -0.01321902363
4 1125.619106 1115.115648 -0.009331271877
16 685.8785968 683.0003853 -0.00419638632

V100, torch=2.0.1+cu118, backend=inductor, mode=reduce-overhead


batch_size no compile throughput compiled throughput Speedup
1 912.675235 929.174622 0.01807804833
4 949.0402977 949.0402977 0
16 870.3765247 878.2037115 0.008992874482

V100, torch=2.0.1+cu118, backend=inductor, mode=max-autotune


batch_size no compile throughput compiled throughput Speedup
1 914.3843777 1759.572145 0.9243243742
4 905.0625994 1352.579591 0.4944597112
16 898.4015545 1600.922162 0.7819672663

V100, torch=2.0.1+cu118, backend=inductor, mode=max-autotune


Skipped.

V100, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode=default


batch_size no compile throughput compiled throughput Speedup
1 930.059557 1434.012471 0.541850154
4 930.9461792 1166.741298 0.2532854468
16 855.1335642 1295.175766 0.5145888551

V100, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode=reduce-overhead


Skipped.

V100, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode=max-autotune


Skipped.

V100, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=default


batch_size no compile throughput compiled throughput Speedup
1 907.5859293 961.1835129 0.05905510638
4 923.9001753 984.4380173 0.06552422395
16 885.3694334 931.8344934 0.05248098503

V100, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=reduce-overhead


batch_size no compile throughput compiled throughput Speedup
1 927.4097944 1722.332421 0.8571427985
4 917.8219393 1323.255468 0.4417344054
16 872.7099915 1535.475601 0.7594339653

V100, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=max-autotune


batch_size no compile throughput compiled throughput Speedup
1 930.9461792 1737.655781 0.8665480556
4 928.2913694 1319.679074 0.4216216135
16 864.2146097 1535.475601 0.7767295111

V100, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=max-autotune


Skipped.

A100, torch=2.0.1+cu118, backend=cudagraphs, mode=default


batch_size no compile throughput compiled throughput Speedup
1 1422.524449 2244.971293 0.5781600764
4 1451.058688 2239.822237 0.5435779795
16 1211.615967 1756.407423 0.449640374

A100, torch=2.0.1+cu118, backend=cudagraphs, mode=reduce-overhead


batch_size no compile throughput compiled throughput Speedup
1 1208.616982 1896.237785 0.5689319392
4 1500.095985 2271.075658 0.5139535612
16 1409.181137 1980.856883 0.4056793908

A100, torch=2.0.1+cu118, backend=cudagraphs, mode=max-autotune


batch_size no compile throughput compiled throughput Speedup
1 1375.440154 2199.465066 0.599099066
4 1401.093953 2194.522411 0.5662921145
16 1421.488371 1992.98467 0.4020407843

A100, torch=2.0.1+cu118, backend=inductor, mode=default


batch_size no compile throughput compiled throughput Speedup
1 1222.230956 1244.028691 0.01783438281
4
16 1413.259722 1383.232962 -0.02124645519

A100, torch=2.0.1+cu118, backend=inductor, mode=reduce-overhead


batch_size no compile throughput compiled throughput Speedup
1 912.675235 929.174622 0.01807804833
4 949.0402977 949.0402977 0
16 870.3765247 878.2037115 0.008992874482

A100, torch=2.0.1+cu118, backend=inductor, mode=max-autotune


Failed due to "got an unexpected keyword argument 'mode'" error

A100, torch=2.0.1+cu118, backend=inductor, mode=max-autotune


Failed due to "got an unexpected keyword argument 'mode'" error

A100, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode=default


batch_size no compile throughput compiled throughput Speedup
1 1373.505625 2281.688087 0.6612149571
4 1415.30794 2319.625867 0.6389548891
16 1352.579591 1992.98467 0.4734694236

A100, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode=reduce-overhead


Skipped.

A100, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode=max-autotune


Skipped.

A100, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=default


batch_size no compile throughput compiled throughput Speedup
1 1377.380141 1434.012471 0.04111597675
4 1337.756796 1391.114692 0.0398860954
16 1170.938241 1256.837228 0.07335910951

A100, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=reduce-overhead


batch_size no compile throughput compiled throughput Speedup
1 1377.380141 1434.012471 0.04111597675
4 1337.756796 1391.114692 0.0398860954
16 1170.938241 1256.837228 0.07335910951

A100, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=max-autotune


batch_size no compile throughput compiled throughput Speedup
1 1178.000566 3023.413447 1.566563662
4 1210.11466 3110.071612 1.570063578
16 1186.588728 2353.16272 0.9831325414

A100, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=max-autotune


batch_size no compile throughput compiled throughput Speedup
1 1379.325608 3180.985245 1.306188782
4 1417.362103 3244.393766 1.289036625
16 1290.04293 2466.066991 0.911616221

CPU, torch=2.0.1+cu118, backend=cudagraphs, mode=default


batch_size no compile throughput compiled throughput Speedup
1 578.1523201 531.928471 -0.07995098789
4 331.9012918 311.6321031 -0.06106992993
16 164.9463843 160.25641 -0.0284333259

CPU, torch=2.0.1+cu118, backend=cudagraphs, mode="reduce-overhead"


Did not run the benchmark because it did not seem promising based on default results

CPU, torch=2.0.1+cu118, backend=cudagraphs, mode=max-autotune


Did not run the benchmark because it did not seem promising based on default results

CPU, torch=2.0.1+cu118, backend=inductor, mode=default


batch_size no compile throughput compiled throughput Speedup
1 546.7588311 565.3345955 0.03397432888
4 331.510474 340.0472254 0.02575107572
16 164.2230245 168.3524304 0.02514510914

CPU, torch=2.0.1+cu118, backend=inductor, mode="reduce-overhead"


batch_size no compile throughput compiled throughput Speedup
1 540.1341171 563.8606004 0.043927022
4 328.3528669 337.565962 0.02805851913
16 164.5715592 168.7219295 0.02521924417

CPU, torch=2.0.1+cu118, backend=inductor, mode="max-autotune"


batch_size no compile throughput compiled throughput Speedup
1 580.6391773 598.2063383 0.03025486687
4 328.9560153 338.3792342 0.02864583246
16 164.5278098 168.3619589 0.02330395751

CPU, torch=2.0.1+cu118, backend=onnxrt, mode=default


batch_size no compile throughput compiled throughput Speedup
1 567.1300498 763.7599065 0.3467103477
4 330.0556529 421.0370352 0.2756546707
16 164.5542296 151.9668204 -0.07649398753

CPU, torch=2.0.1+cu118, backend=onnxrt, mode="reduce-overhead"


batch_size no compile throughput compiled throughput Speedup
1 578.993195 775.3957802 0.3392139786
4 333.5218966 422.1717724 0.2657992675
16 160.4411238 151.6401364 -0.05485493474

CPU, torch=2.0.1+cu118, backend=onnxrt, mode="max-autotune"


batch_size no compile throughput compiled throughput Speedup
1 536.158516 770.1312457 0.4363872301
4 332.4220525 418.4212516 0.2587048557
16 163.9339995 112.1524862 -0.3158680534

CPU, torch=2.0.1+cu118, backend=ipex, mode=default


batch_size no compile throughput compiled throughput Speedup
1 584.9814324 796.2696504 0.361187905
4 332.1605868 408.9404238 0.2311527618
16 160.8793055 185.0103189 0.1499945152

CPU, torch=2.0.1+cu118, backend=ipex, mode="reduce-overhead"


batch_size no compile throughput compiled throughput Speedup
1 584.9814324 799.9283288 0.3674422547
4 331.7075254 408.6623514 0.2319960208
16 164.4615619 185.7526198 0.123758031

CPU, torch=2.0.1+cu118, backend=ipex, mode="max-autotune"


batch_size no compile throughput compiled throughput Speedup
1 577.9651795 796.2899452 0.3777472648
4 329.1032688 408.9511096 0.2426224483
16 165.0165032 185.7526198 0.1256608654

CPU, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode=default


The numbers did not show significant speedup

CPU, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode="reduce-overhead"


Failed due to "got an unexpected keyword argument mode error

CPU, torch=2.1.0.dev20230614+cu118, backend=cudagraphs, mode=max-autotune


Failed due to "got an unexpected keyword argument mode error

CPU, torch=2.1.0.dev20230614+cu118, backend=inductor, mode=default


The numbers did not show significant speedup

CPU, torch=2.1.0.dev20230614+cu118, backend=inductor, mode="reduce-overhead"


Failed due to "got an unexpected keyword argument mode error

CPU, torch=2.1.0.dev20230614+cu118, backend=inductor, mode="max-autotune"


Failed due to "got an unexpected keyword argument mode error

CPU, torch=2.1.0.dev20230614+cu118, backend=onnxrt, mode=default


batch_size no compile throughput compiled throughput Speedup
1 541.1677144 492.941076 -0.08911588254
4 308.4683275 405.3072657 0.3139347854
16 162.7905163 150.3097612 -0.07666758126

CPU, torch=2.1.0.dev20230614+cu118, backend=onnxrt, mode="reduce-overhead"


Failed due to "got an unexpected keyword argument mode error

CPU, torch=2.1.0.dev20230614+cu118, backend=onnxrt, mode="max-autotune"


Failed due to "got an unexpected keyword argument mode error

CPU, torch=2.1.0.dev20230614+cu118, backend=ipex, mode=default


Failed due to intel_extension_for_pytorch not being compatible with the nightly version of torch

CPU, torch=2.1.0.dev20230614+cu118, backend=ipex, mode="reduce-overhead"


Failed due to "got an unexpected keyword argument mode error

CPU, torch=2.1.0.dev20230614+cu118, backend=ipex, mode="max-autotune"


Failed due to "got an unexpected keyword argument mode error