forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
common.py
649 lines (610 loc) · 25.1 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import argparse
from dataclasses import dataclass
from enum import Enum
import os.path
import tempfile
import typer
from typing import Optional
import requests
from ray.tune.experiment.config_parser import _make_parser
from ray.tune.result import DEFAULT_RESULTS_DIR
class FrameworkEnum(str, Enum):
"""Supported frameworks for RLlib, used for CLI argument validation."""
tf = "tf"
tf2 = "tf2"
torch = "torch"
class SupportedFileType(str, Enum):
"""Supported file types for RLlib, used for CLI argument validation."""
yaml = "yaml"
python = "python"
def get_file_type(config_file: str) -> SupportedFileType:
if config_file.endswith(".py"):
file_type = SupportedFileType.python
elif config_file.endswith(".yaml") or config_file.endswith(".yml"):
file_type = SupportedFileType.yaml
else:
raise ValueError(
"Unknown file type for config "
"file: {}. Supported extensions: .py, "
".yml, .yaml".format(config_file)
)
return file_type
def _create_tune_parser_help():
"""Create a Tune dummy parser to access its 'help' docstrings."""
parser = _make_parser(
parser_creator=None,
formatter_class=argparse.RawDescriptionHelpFormatter,
)
return parser.__dict__.get("_option_string_actions")
PARSER_HELP = _create_tune_parser_help()
def download_example_file(
example_file: str,
base_url: Optional[str] = "https://raw.githubusercontent.com/"
+ "ray-project/ray/master/rllib/",
):
"""Download the example file (e.g. from GitHub) if it doesn't exist locally.
If the provided example file exists locally, we return it directly.
Not every user will have cloned our repo and cd'ed into this working directory
when using the CLI.
Args:
example_file: The example file to download.
base_url: The base URL to download the example file from. Use this if
'example_file' is a link relative to this base URL. If set to 'None',
'example_file' is assumed to be a complete URL (or a local file, in which
case nothing is downloaded).
"""
temp_file = None
if not os.path.exists(example_file):
example_url = base_url + example_file if base_url else example_file
print(f">>> Attempting to download example file {example_url}...")
file_type = get_file_type(example_url)
if file_type == SupportedFileType.yaml:
temp_file = tempfile.NamedTemporaryFile(suffix=".yaml")
else:
assert (
file_type == SupportedFileType.python
), f"`example_url` ({example_url}) must be a python or yaml file!"
temp_file = tempfile.NamedTemporaryFile(suffix=".py")
r = requests.get(example_url)
with open(temp_file.name, "wb") as f:
print(r.content)
f.write(r.content)
print(f" Status code: {r.status_code}")
if r.status_code == 200:
print(f" Downloaded example file to {temp_file.name}")
# only overwrite the file if the download was successful
example_file = temp_file.name
return example_file, temp_file
def get_help(key: str) -> str:
"""Get the help string from a parser for a given key.
If e.g. 'resource_group' is provided, we return
the entry for '--resource-group'."""
key = "--" + key
key = key.replace("_", "-")
if key not in PARSER_HELP.keys():
raise ValueError(f"Key {key} not found in parser.")
return PARSER_HELP.get(key).help
example_help = dict(
filter="Filter examples by exact substring match. For instance,"
" --filter=ppo will only show examples that"
" contain the substring 'ppo' in their ID. The same way, -f=recsys"
"will return all recommender system examples.",
)
train_help = dict(
env="The environment specifier to use. This could be an Farama-Foundation "
"Gymnasium specifier (e.g. `CartPole-v1`) or a full class-path (e.g. "
"`ray.rllib.examples.env.simple_corridor.SimpleCorridor`).",
config_file="Use the algorithm configuration from this file.",
filetype="The file type of the config file. Defaults to 'yaml' and can also be "
"'python'.",
experiment_name="Name of the subdirectory under `local_dir` to put results in.",
framework="The identifier of the deep learning framework you want to use."
"Choose between TensorFlow 1.x ('tf'), TensorFlow 2.x ('tf2'), "
"and PyTorch ('torch').",
v="Whether to use INFO level logging.",
vv="Whether to use DEBUG level logging.",
resume="Whether to attempt to resume from previous experiments.",
local_dir=f"Local dir to save training results to. "
f"Defaults to '{DEFAULT_RESULTS_DIR}'.",
local_mode="Run Ray in local mode for easier debugging.",
ray_address="Connect to an existing Ray cluster at this address instead "
"of starting a new one.",
ray_ui="Whether to enable the Ray web UI.",
ray_num_cpus="The '--num-cpus' argument to use if starting a new cluster.",
ray_num_gpus="The '--num-gpus' argument to use if starting a new cluster.",
ray_num_nodes="Emulate multiple cluster nodes for debugging.",
ray_object_store_memory="--object-store-memory to use if starting a new cluster.",
upload_dir="Optional URI to sync training results to (e.g. s3://bucket).",
trace="Whether to attempt to enable eager-tracing for framework=tf2.",
torch="Whether to use PyTorch (instead of tf) as the DL framework. "
"This argument is deprecated, please use --framework to select 'torch'"
"as backend.",
wandb_key="An optional WandB API key for logging all results to your WandB "
"account.",
wandb_project="An optional project name under which to store the training results.",
wandb_run_name="An optional name for the specific run under which to store the "
"training results.",
)
eval_help = dict(
checkpoint="Optional checkpoint from which to roll out. If none provided, we will "
"evaluate an untrained algorithm.",
algo="The algorithm or model to train. This may refer to the name of a built-in "
"Algorithm (e.g. RLlib's `DQN` or `PPO`), or a user-defined trainable "
"function or class registered in the Tune registry.",
env="The environment specifier to use. This could be an Farama-Foundation gymnasium"
" specifier (e.g. `CartPole-v1`) or a full class-path (e.g. "
"`ray.rllib.examples.env.simple_corridor.SimpleCorridor`).",
local_mode="Run Ray in local mode for easier debugging.",
render="Render the environment while evaluating. Off by default",
video_dir="Specifies the directory into which videos of all episode"
"rollouts will be stored.",
steps="Number of time-steps to roll out. The evaluation will also stop if "
"`--episodes` limit is reached first. A value of 0 means no "
"limitation on the number of time-steps run.",
episodes="Number of complete episodes to roll out. The evaluation will also stop "
"if `--steps` (time-steps) limit is reached first. A value of 0 means "
"no limitation on the number of episodes run.",
out="Output filename",
config="Algorithm-specific configuration (e.g. `env`, `framework` etc.). "
"Gets merged with loaded configuration from checkpoint file and "
"`evaluation_config` settings therein.",
save_info="Save the info field generated by the step() method, "
"as well as the action, observations, rewards and done fields.",
use_shelve="Save rollouts into a Python shelf file (will save each episode "
"as it is generated). An output filename must be set using --out.",
track_progress="Write progress to a temporary file (updated "
"after each episode). An output filename must be set using --out; "
"the progress file will live in the same folder.",
)
@dataclass
class CLIArguments:
"""Dataclass for CLI arguments and options. We use this class to keep track
of common arguments, like "run" or "env" that would otherwise be duplicated."""
# Common arguments
# __cli_common_start__
Algo = typer.Option(None, "--algo", "--run", "-a", "-r", help=get_help("run"))
AlgoRequired = typer.Option(
..., "--algo", "--run", "-a", "-r", help=get_help("run")
)
Env = typer.Option(None, "--env", "-e", help=train_help.get("env"))
EnvRequired = typer.Option(..., "--env", "-e", help=train_help.get("env"))
Config = typer.Option("{}", "--config", "-c", help=get_help("config"))
ConfigRequired = typer.Option(..., "--config", "-c", help=get_help("config"))
# __cli_common_end__
# Train file arguments
# __cli_file_start__
ConfigFile = typer.Argument( # config file is now mandatory for "file" subcommand
..., help=train_help.get("config_file")
)
FileType = typer.Option(
SupportedFileType.yaml, "--type", "-t", help=train_help.get("filetype")
)
# __cli_file_end__
# Train arguments
# __cli_train_start__
Stop = typer.Option("{}", "--stop", "-s", help=get_help("stop"))
ExperimentName = typer.Option(
"default", "--experiment-name", "-n", help=train_help.get("experiment_name")
)
V = typer.Option(False, "--log-info", "-v", help=train_help.get("v"))
VV = typer.Option(False, "--log-debug", "-vv", help=train_help.get("vv"))
Resume = typer.Option(False, help=train_help.get("resume"))
NumSamples = typer.Option(1, help=get_help("num_samples"))
CheckpointFreq = typer.Option(0, help=get_help("checkpoint_freq"))
CheckpointAtEnd = typer.Option(True, help=get_help("checkpoint_at_end"))
LocalDir = typer.Option(DEFAULT_RESULTS_DIR, help=train_help.get("local_dir"))
Restore = typer.Option(None, help=get_help("restore"))
Framework = typer.Option(None, help=train_help.get("framework"))
ResourcesPerTrial = typer.Option(None, help=get_help("resources_per_trial"))
KeepCheckpointsNum = typer.Option(None, help=get_help("keep_checkpoints_num"))
CheckpointScoreAttr = typer.Option(
"training_iteration", help=get_help("sync_on_checkpoint")
)
UploadDir = typer.Option("", help=train_help.get("upload_dir"))
Trace = typer.Option(False, help=train_help.get("trace"))
LocalMode = typer.Option(False, help=train_help.get("local_mode"))
Scheduler = typer.Option("FIFO", help=get_help("scheduler"))
SchedulerConfig = typer.Option("{}", help=get_help("scheduler_config"))
RayAddress = typer.Option(None, help=train_help.get("ray_address"))
RayUi = typer.Option(False, help=train_help.get("ray_ui"))
RayNumCpus = typer.Option(None, help=train_help.get("ray_num_cpus"))
RayNumGpus = typer.Option(None, help=train_help.get("ray_num_gpus"))
RayNumNodes = typer.Option(None, help=train_help.get("ray_num_nodes"))
RayObjectStoreMemory = typer.Option(
None, help=train_help.get("ray_object_store_memory")
)
WandBKey = typer.Option(None, "--wandb-key", help=train_help.get("wandb_key"))
WandBProject = typer.Option(
None, "--wandb-project", help=eval_help.get("wandb_project")
)
WandBRunName = typer.Option(
None, "--wandb-run-name", help=eval_help.get("wandb_run_name")
)
# __cli_train_end__
# Eval arguments
# __cli_eval_start__
Checkpoint = typer.Argument(None, help=eval_help.get("checkpoint"))
Render = typer.Option(False, help=eval_help.get("render"))
Steps = typer.Option(10000, help=eval_help.get("steps"))
Episodes = typer.Option(0, help=eval_help.get("episodes"))
Out = typer.Option(None, help=eval_help.get("out"))
SaveInfo = typer.Option(False, help=eval_help.get("save_info"))
UseShelve = typer.Option(False, help=eval_help.get("use_shelve"))
TrackProgress = typer.Option(False, help=eval_help.get("track_progress"))
# __cli_eval_end__
# Note that the IDs of these examples are lexicographically sorted by environment,
# not by algorithm. This should be more natural for users, but could be changed easily.
EXAMPLES = {
# A2C
"atari-a2c": {
"file": "tuned_examples/a2c/atari-a2c.yaml",
"description": "Runs grid search over several Atari games on A2C.",
},
"cartpole-a2c": {
"file": "tuned_examples/a2c/cartpole_a2c.py",
"stop": "{'timesteps_total': 50000, 'episode_reward_mean': 200}",
"description": "Runs A2C on the CartPole-v1 environment.",
},
"cartpole-a2c-micro": {
"file": "tuned_examples/a2c/cartpole-a2c-microbatch.yaml",
"description": "Runs A2C on the CartPole-v1 environment, using micro-batches.",
},
# A3C
"cartpole-a3c": {
"file": "tuned_examples/a3c/cartpole_a3c.py",
"stop": "{'timesteps_total': 20000, 'episode_reward_mean': 150}",
"description": "Runs A3C on the CartPole-v1 environment.",
},
"pong-a3c": {
"file": "tuned_examples/a3c/pong-a3c.yaml",
"description": "Runs A3C on the ALE/Pong-v5 (deterministic) environment.",
},
# AlphaStar
"multi-agent-cartpole-alpha-star": {
"file": "tuned_examples/alpha_star/multi-agent-cartpole-alpha-star.yaml",
"description": "Runs AlphaStar on 4 CartPole agents.",
},
# AlphaZero
"cartpole-alpha-zero": {
"file": "tuned_examples/alpha_zero/cartpole-sparse-rewards-alpha-zero.yaml",
"description": "Runs AlphaZero on a Cartpole with sparse rewards.",
},
# Apex DDPG
"mountaincar-apex-ddpg": {
"file": "tuned_examples/apex_ddpg/mountaincarcontinuous-apex-ddpg.yaml",
"description": "Runs Apex DDPG on MountainCarContinuous-v0.",
},
"pendulum-apex-ddpg": {
"file": "tuned_examples/apex_ddpg/pendulum-apex-ddpg.yaml",
"description": "Runs Apex DDPG on Pendulum-v1.",
},
# Apex DQN
"breakout-apex-dqn": {
"file": "tuned_examples/apex_dqn/atari-apex-dqn.yaml",
"description": "Runs Apex DQN on ALE/Breakout-v5 (no frameskip).",
},
"cartpole-apex-dqn": {
"file": "tuned_examples/apex_dqn/cartpole-apex-dqn.yaml",
"description": "Runs Apex DQN on CartPole-v1.",
},
"pong-apex-dqn": {
"file": "tuned_examples/apex_dqn/pong-apex-dqn.yaml",
"description": "Runs Apex DQN on ALE/Pong-v5 (no frameskip).",
},
# APPO
"cartpole-appo": {
"file": "tuned_examples/appo/cartpole-appo.yaml",
"description": "Runs APPO on CartPole-v1.",
},
"frozenlake-appo": {
"file": "tuned_examples/appo/frozenlake-appo-vtrace.yaml",
"description": "Runs APPO on FrozenLake-v1.",
},
"halfcheetah-appo": {
"file": "tuned_examples/appo/halfcheetah-appo.yaml",
"description": "Runs APPO on HalfCheetah-v2.",
},
"multi-agent-cartpole-appo": {
"file": "tuned_examples/appo/multi-agent-cartpole-appo.yaml",
"description": "Runs APPO on RLlib's MultiAgentCartPole",
},
"pendulum-appo": {
"file": "tuned_examples/appo/pendulum-appo.yaml",
"description": "Runs APPO on Pendulum-v1.",
},
"pong-appo": {
"file": "tuned_examples/appo/pong-appo.yaml",
"description": "Runs APPO on ALE/Pong-v5 (no frameskip).",
},
# ARS
"cartpole-ars": {
"file": "tuned_examples/ars/cartpole-ars.yaml",
"description": "Runs ARS on CartPole-v1.",
},
"swimmer-ars": {
"file": "tuned_examples/ars/swimmer-ars.yaml",
"description": "Runs ARS on Swimmer-v2.",
},
# Bandits
"recsys-bandits": {
"file": "tuned_examples/bandits/"
+ "interest-evolution-recsim-env-bandit-linucb.yaml",
"description": "Runs BanditLinUCB on a Recommendation Simulation environment.",
},
# BC
"cartpole-bc": {
"file": "tuned_examples/bc/cartpole-bc.yaml",
"description": "Runs BC on CartPole-v1.",
},
# CQL
"halfcheetah-cql": {
"file": "tuned_examples/cql/halfcheetah-cql.yaml",
"description": "Runs grid search on HalfCheetah environments with CQL.",
},
"hopper-cql": {
"file": "tuned_examples/cql/hopper-cql.yaml",
"description": "Runs grid search on Hopper environments with CQL.",
},
"pendulum-cql": {
"file": "tuned_examples/cql/pendulum-cql.yaml",
"description": "Runs CQL on Pendulum-v1.",
},
# CRR
"cartpole-crr": {
"file": "tuned_examples/crr/CartPole-v1-crr.yaml",
"description": "Run CRR on CartPole-v1.",
},
"pendulum-crr": {
"file": "tuned_examples/crr/pendulum-v1-crr.yaml",
"description": "Run CRR on Pendulum-v1.",
},
# DDPG
"halfcheetah-ddpg": {
"file": "tuned_examples/ddpg/halfcheetah-ddpg.yaml",
"description": "Runs DDPG on HalfCheetah-v2.",
},
"halfcheetah-bullet-ddpg": {
"file": "tuned_examples/ddpg/halfcheetah-pybullet-ddpg.yaml",
"description": "Runs DDPG on HalfCheetahBulletEnv-v0.",
},
"hopper-bullet-ddpg": {
"file": "tuned_examples/ddpg/hopper-pybullet-ddpg.yaml",
"description": "Runs DDPG on HopperBulletEnv-v0.",
},
"mountaincar-ddpg": {
"file": "tuned_examples/ddpg/mountaincarcontinuous-ddpg.yaml",
"description": "Runs DDPG on MountainCarContinuous-v0.",
},
"pendulum-ddpg": {
"file": "tuned_examples/ddpg/pendulum-ddpg.yaml",
"description": "Runs DDPG on Pendulum-v1.",
},
# DDPPO
"breakout-ddppo": {
"file": "tuned_examples/ddppo/atari-ddppo.yaml",
"description": "Runs DDPPO on ALE/Breakout-v5 (no frameskip).",
},
"cartpole-ddppo": {
"file": "tuned_examples/ddppo/cartpole-ddppo.yaml",
"description": "Runs DDPPO on CartPole-v1",
},
"pendulum-ddppo": {
"file": "tuned_examples/ddppo/pendulum-ddppo.yaml",
"description": "Runs DDPPO on Pendulum-v1.",
},
# DQN
"atari-dqn": {
"file": "tuned_examples/dqn/atari-dqn.yaml",
"description": "Run grid search on Atari environments with DQN.",
},
"atari-duel-ddqn": {
"file": "tuned_examples/dqn/atari-duel-ddqn.yaml",
"description": "Run grid search on Atari environments "
"with duelling double DQN.",
},
"cartpole-dqn": {
"file": "tuned_examples/dqn/cartpole-dqn.yaml",
"description": "Run DQN on CartPole-v1.",
},
"pong-dqn": {
"file": "tuned_examples/dqn/pong-dqn.yaml",
"description": "Run DQN on ALE/Pong-v5 (deterministic).",
},
"pong-rainbow": {
"file": "tuned_examples/dqn/pong-rainbow.yaml",
"description": "Run Rainbow on ALE/Pong-v5 (deterministic).",
},
# DREAMER
"dm-control-dreamer": {
"file": "tuned_examples/dreamer/dreamer-deepmind-control.yaml",
"description": "Run DREAMER on a suite of control problems by Deepmind.",
},
# DT
"cartpole-dt": {
"file": "tuned_examples/dt/CartPole-v1-dt.yaml",
"description": "Run DT on CartPole-v1.",
},
"pendulum-dt": {
"file": "tuned_examples/dt/pendulum-v1-dt.yaml",
"description": "Run DT on Pendulum-v1.",
},
# ES
"cartpole-es": {
"file": "tuned_examples/es/cartpole-es.yaml",
"description": "Run ES on CartPole-v1.",
},
"humanoid-es": {
"file": "tuned_examples/es/humanoid-es.yaml",
"description": "Run ES on Humanoid-v2.",
},
# IMPALA
"atari-impala": {
"file": "tuned_examples/impala/atari-impala.yaml",
"description": "Run grid search over several atari games with IMPALA.",
},
"cartpole-impala": {
"file": "tuned_examples/impala/cartpole-impala.yaml",
"description": "Run IMPALA on CartPole-v1.",
},
"multi-agent-cartpole-impala": {
"file": "tuned_examples/impala/multi-agent-cartpole-impala.yaml",
"description": "Run IMPALA on RLlib's MultiAgentCartPole",
},
"pendulum-impala": {
"file": "tuned_examples/impala/pendulum-impala.yaml",
"description": "Run IMPALA on Pendulum-v1.",
},
"pong-impala": {
"file": "tuned_examples/impala/pong-impala-fast.yaml",
"description": "Run IMPALA on ALE/Pong-v5 (no frameskip).",
},
# MADDPG
"two-step-game-maddpg": {
"file": "tuned_examples/maddpg/two-step-game-maddpg.yaml",
"description": "Run RLlib's Two-step game with multi-agent DDPG.",
},
# MAML
"cartpole-maml": {
"file": "tuned_examples/maml/cartpole-maml.yaml",
"description": "Run MAML on CartPole-v1.",
},
"halfcheetah-maml": {
"file": "tuned_examples/maml/halfcheetah-rand-direc-maml.yaml",
"description": "Run MAML on a custom HalfCheetah environment.",
},
"pendulum-maml": {
"file": "tuned_examples/maml/pendulum-mass-maml.yaml",
"description": "Run MAML on a custom Pendulum environment.",
},
# MARWIL
"cartpole-marwil": {
"file": "tuned_examples/marwil/cartpole-marwil.yaml",
"description": "Run MARWIL on CartPole-v1.",
},
# MBMPO
"cartpole-mbmpo": {
"file": "tuned_examples/mbmpo/cartpole-mbmpo.yaml",
"description": "Run MBMPO on a CartPole environment wrapper.",
},
"halfcheetah-mbmpo": {
"file": "tuned_examples/mbmpo/halfcheetah-mbmpo.yaml",
"description": "Run MBMPO on a HalfCheetah environment wrapper.",
},
"hopper-mbmpo": {
"file": "tuned_examples/mbmpo/hopper-mbmpo.yaml",
"description": "Run MBMPO on a Hopper environment wrapper.",
},
"pendulum-mbmpo": {
"file": "tuned_examples/mbmpo/pendulum-mbmpo.yaml",
"description": "Run MBMPO on a Pendulum environment wrapper.",
},
# PG
"cartpole-pg": {
"file": "tuned_examples/pg/cartpole-pg.yaml",
"description": "Run PG on CartPole-v1",
},
# PPO
"atari-ppo": {
"file": "tuned_examples/ppo/atari-ppo.yaml",
"description": "Run grid search over several atari games with PPO.",
},
"cartpole-ppo": {
"file": "tuned_examples/ppo/cartpole-ppo.yaml",
"description": "Run PPO on CartPole-v1.",
},
"halfcheetah-ppo": {
"file": "tuned_examples/ppo/halfcheetah-ppo.yaml",
"description": "Run PPO on HalfCheetah-v2.",
},
"hopper-ppo": {
"file": "tuned_examples/ppo/hopper-ppo.yaml",
"description": "Run PPO on Hopper-v1.",
},
"humanoid-ppo": {
"file": "tuned_examples/ppo/humanoid-ppo.yaml",
"description": "Run PPO on Humanoid-v1.",
},
"pendulum-ppo": {
"file": "tuned_examples/ppo/pendulum-ppo.yaml",
"description": "Run PPO on Pendulum-v1.",
},
"pong-ppo": {
"file": "tuned_examples/ppo/pong-ppo.yaml",
"description": "Run PPO on ALE/Pong-v5 (no frameskip).",
},
"recsys-ppo": {
"file": "tuned_examples/ppo/recomm-sys001-ppo.yaml",
"description": "Run PPO on a recommender system example from RLlib.",
},
"repeatafterme-ppo": {
"file": "tuned_examples/ppo/repeatafterme-ppo-lstm.yaml",
"description": "Run PPO on RLlib's RepeatAfterMe environment.",
},
"walker2d-ppo": {
"file": "tuned_examples/ppo/walker2d-ppo.yaml",
"description": "Run PPO on the Walker2d-v1 environment.",
},
# QMIX
"two-step-game-qmix": {
"file": "tuned_examples/qmix/two-step-game-qmix.yaml",
"description": "Run QMIX on RLlib's two-step game.",
},
# R2D2
"stateless-cartpole-r2d2": {
"file": "tuned_examples/r2d2/stateless-cartpole-r2d2.yaml",
"description": "Run R2D2 on a stateless cart pole environment.",
},
# SAC
"atari-sac": {
"file": "tuned_examples/sac/atari-sac.yaml",
"description": "Run grid search on several atari games with SAC.",
},
"cartpole-sac": {
"file": "tuned_examples/sac/cartpole-sac.yaml",
"description": "Run SAC on CartPole-v1",
},
"halfcheetah-sac": {
"file": "tuned_examples/sac/halfcheetah-sac.yaml",
"description": "Run SAC on HalfCheetah-v3.",
},
"pacman-sac": {
"file": "tuned_examples/sac/mspacman-sac.yaml",
"description": "Run SAC on ALE/MsPacman-v5 (no frameskip).",
},
"pendulum-sac": {
"file": "tuned_examples/sac/pendulum-sac.yaml",
"description": "Run SAC on Pendulum-v1.",
},
# SimpleQ
"cartpole-simpleq": {
"file": "tuned_examples/simple_q/cartpole-simpleq.yaml",
"description": "Run SimpleQ on CartPole-v1",
},
# SlateQ
"recsys-long-term-slateq": {
"file": "tuned_examples/slateq/long-term-satisfaction-recsim-env-slateq.yaml",
"description": "Run SlateQ on a recommendation system aimed at "
"long-term satisfaction.",
},
"recsys-parametric-slateq": {
"file": "tuned_examples/slateq/parametric-item-reco-env-slateq.yaml",
"description": "SlateQ run on a recommendation system.",
},
"recsys-slateq": {
"file": "tuned_examples/slateq/recomm-sys001-slateq.yaml",
"description": "SlateQ run on a recommendation system.",
},
# TD3
"inverted-pendulum-td3": {
"file": "tuned_examples/td3/invertedpendulum-td3.yaml",
"description": "Run TD3 on InvertedPendulum-v2.",
},
"mujoco-td3": {
"file": "tuned_examples/td3/mujoco-td3.yaml",
"description": "Run TD3 against four of the hardest MuJoCo tasks.",
},
"pendulum-td3": {
"file": "tuned_examples/td3/pendulum-td3.yaml",
"description": "Run TD3 on Pendulum-v1.",
},
}