forked from TheAlgorithms/C-Plus-Plus
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add Quadratic equations complex numbers (TheAlgorithms#2451)
* Added quadratic_equations_complex_numbers.cpp * Added a demonstration * Added test cases * Added test cases * Revert "Added test cases" This reverts commit a1433a9. * Added test cases and made docs /// instead of // * test: Added test cases for quadraticEquation docs: Changed comment style * test: more test cases docs: added documentation * docs: Updated description * chore: removed redundant returns * chore: fixed formatting to pass Code Formatter checks * chore: apply suggestions from code review Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com> * test: Added exception test * Update math/quadratic_equations_complex_numbers.cpp Co-authored-by: Taj <tjgurwara99@users.noreply.github.com> * Update math/quadratic_equations_complex_numbers.cpp Co-authored-by: Taj <tjgurwara99@users.noreply.github.com> * Update math/quadratic_equations_complex_numbers.cpp Co-authored-by: Taj <tjgurwara99@users.noreply.github.com> --------- Co-authored-by: David Leal <halfpacho@gmail.com> Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com> Co-authored-by: Taj <tjgurwara99@users.noreply.github.com>
- Loading branch information
1 parent
1a1570d
commit a022701
Showing
1 changed file
with
189 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
/** | ||
* @file | ||
* @brief Calculate quadratic equation with complex roots, i.e. b^2 - 4ac < 0. | ||
* | ||
* @author [Renjian-buchai](https://github.com/Renjian-buchai) | ||
* | ||
* @description Calculates any quadratic equation in form ax^2 + bx + c. | ||
* | ||
* Quadratic equation: | ||
* x = (-b +/- sqrt(b^2 - 4ac)) / 2a | ||
* | ||
* @example | ||
* int main() { | ||
* using std::array; | ||
* using std::complex; | ||
* using std::cout; | ||
* | ||
* array<complex<long double, 2> solutions = quadraticEquation(1, 2, 1); | ||
* cout << solutions[0] << " " << solutions[1] << "\n"; | ||
* | ||
* solutions = quadraticEquation(1, 1, 1); // Reusing solutions. | ||
* cout << solutions[0] << " " << solutions[1] << "\n"; | ||
* return 0; | ||
* } | ||
* | ||
* Output: | ||
* (-1, 0) (-1, 0) | ||
* (-0.5,0.866025) (-0.5,0.866025) | ||
*/ | ||
|
||
#include <array> /// std::array | ||
#include <cassert> /// assert | ||
#include <cmath> /// std::sqrt, std::trunc, std::pow | ||
#include <complex> /// std::complex | ||
#include <exception> /// std::invalid_argument | ||
#include <iomanip> /// std::setprecision | ||
#include <iostream> /// std::cout | ||
|
||
/** | ||
* @namespace | ||
* @brief Mathematical algorithms | ||
*/ | ||
namespace math { | ||
|
||
/** | ||
* @brief Quadratic equation calculator. | ||
* @param a quadratic coefficient. | ||
* @param b linear coefficient. | ||
* @param c constant | ||
* @return Array containing the roots of quadratic equation, incl. complex | ||
* root. | ||
*/ | ||
std::array<std::complex<long double>, 2> quadraticEquation(long double a, | ||
long double b, | ||
long double c) { | ||
if (a == 0) { | ||
throw std::invalid_argument("quadratic coefficient cannot be 0"); | ||
} | ||
|
||
long double discriminant = b * b - 4 * a * c; | ||
std::array<std::complex<long double>, 2> solutions{0, 0}; | ||
|
||
if (discriminant == 0) { | ||
solutions[0] = -b * 0.5 / a; | ||
solutions[1] = -b * 0.5 / a; | ||
return solutions; | ||
} | ||
|
||
// Complex root (discriminant < 0) | ||
// Note that the left term (-b / 2a) is always real. The imaginary part | ||
// appears when b^2 - 4ac < 0, so sqrt(b^2 - 4ac) has no real roots. So, | ||
// the imaginary component is i * (+/-)sqrt(abs(b^2 - 4ac)) / 2a. | ||
if (discriminant > 0) { | ||
// Since discriminant > 0, there are only real roots. Therefore, | ||
// imaginary component = 0. | ||
solutions[0] = std::complex<long double>{ | ||
(-b - std::sqrt(discriminant)) * 0.5 / a, 0}; | ||
solutions[1] = std::complex<long double>{ | ||
(-b + std::sqrt(discriminant)) * 0.5 / a, 0}; | ||
return solutions; | ||
} | ||
// Since b^2 - 4ac is < 0, for faster computation, -discriminant is | ||
// enough to make it positive. | ||
solutions[0] = std::complex<long double>{ | ||
-b * 0.5 / a, -std::sqrt(-discriminant) * 0.5 / a}; | ||
solutions[1] = std::complex<long double>{ | ||
-b * 0.5 / a, std::sqrt(-discriminant) * 0.5 / a}; | ||
|
||
return solutions; | ||
} | ||
|
||
} // namespace math | ||
|
||
/** | ||
* @brief Asserts an array of complex numbers. | ||
* @param input Input array of complex numbers. . | ||
* @param expected Expected array of complex numbers. | ||
* @param precision Precision to be asserted. Default=10 | ||
*/ | ||
void assertArray(std::array<std::complex<long double>, 2> input, | ||
std::array<std::complex<long double>, 2> expected, | ||
size_t precision = 10) { | ||
long double exponent = std::pow(10, precision); | ||
input[0].real(std::round(input[0].real() * exponent)); | ||
input[1].real(std::round(input[1].real() * exponent)); | ||
input[0].imag(std::round(input[0].imag() * exponent)); | ||
input[1].imag(std::round(input[1].imag() * exponent)); | ||
|
||
expected[0].real(std::round(expected[0].real() * exponent)); | ||
expected[1].real(std::round(expected[1].real() * exponent)); | ||
expected[0].imag(std::round(expected[0].imag() * exponent)); | ||
expected[1].imag(std::round(expected[1].imag() * exponent)); | ||
|
||
assert(input == expected); | ||
} | ||
|
||
/** | ||
* @brief Self-test implementations to test quadraticEquation function. | ||
* @note There are 4 different types of solutions: Real and equal, real, | ||
* complex, complex and equal. | ||
*/ | ||
static void test() { | ||
// Values are equal and real. | ||
std::cout << "Input: \n" | ||
"a=1 \n" | ||
"b=-2 \n" | ||
"c=1 \n" | ||
"Expected output: \n" | ||
"(1, 0), (1, 0)\n\n"; | ||
std::array<std::complex<long double>, 2> equalCase{ | ||
std::complex<long double>{1, 0}, std::complex<long double>{1, 0}}; | ||
assert(math::quadraticEquation(1, -2, 1) == equalCase); | ||
|
||
// Values are equal and complex. | ||
std::cout << "Input: \n" | ||
"a=1 \n" | ||
"b=4 \n" | ||
"c=5 \n" | ||
"Expected output: \n" | ||
"(-2, -1), (-2, 1)\n\n"; | ||
std::array<std::complex<long double>, 2> complexCase{ | ||
std::complex<long double>{-2, -1}, std::complex<long double>{-2, 1}}; | ||
assert(math::quadraticEquation(1, 4, 5) == complexCase); | ||
|
||
// Values are real. | ||
std::cout << "Input: \n" | ||
"a=1 \n" | ||
"b=5 \n" | ||
"c=1 \n" | ||
"Expected output: \n" | ||
"(-4.7912878475, 0), (-0.2087121525, 0)\n\n"; | ||
std::array<std::complex<long double>, 2> floatCase{ | ||
std::complex<long double>{-4.7912878475, 0}, | ||
std::complex<long double>{-0.2087121525, 0}}; | ||
assertArray(math::quadraticEquation(1, 5, 1), floatCase); | ||
|
||
// Values are complex. | ||
std::cout << "Input: \n" | ||
"a=1 \n" | ||
"b=1 \n" | ||
"c=1 \n" | ||
"Expected output: \n" | ||
"(-0.5, -0.8660254038), (-0.5, 0.8660254038)\n\n"; | ||
std::array<std::complex<long double>, 2> ifloatCase{ | ||
std::complex<long double>{-0.5, -0.8660254038}, | ||
std::complex<long double>{-0.5, 0.8660254038}}; | ||
assertArray(math::quadraticEquation(1, 1, 1), ifloatCase); | ||
|
||
std::cout << "Exception test: \n" | ||
"Input: \n" | ||
"a=0 \n" | ||
"b=0 \n" | ||
"c=0\n" | ||
"Expected output: Exception thrown \n"; | ||
try { | ||
math::quadraticEquation(0, 0, 0); | ||
} catch (std::invalid_argument& e) { | ||
std::cout << "Exception thrown successfully \n"; | ||
} | ||
} | ||
|
||
/** | ||
* @brief Main function | ||
* @returns 0 on exit | ||
*/ | ||
int main() { | ||
test(); // Run self-test implementation. | ||
return 0; | ||
} |