forked from TheAlgorithms/C-Plus-Plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
graham_scan_functions.hpp
209 lines (186 loc) · 8.19 KB
/
graham_scan_functions.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/******************************************************************************
* @file
* @brief Implementation of the [Convex
* Hull](https://en.wikipedia.org/wiki/Convex_hull) implementation using [Graham
* Scan](https://en.wikipedia.org/wiki/Graham_scan)
* @details
* In geometry, the convex hull or convex envelope or convex closure of a shape
* is the smallest convex set that contains it. The convex hull may be defined
* either as the intersection of all convex sets containing a given subset of a
* Euclidean space, or equivalently as the set of all convex combinations of
* points in the subset. For a bounded subset of the plane, the convex hull may
* be visualized as the shape enclosed by a rubber band stretched around the
* subset.
*
* The worst case time complexity of Jarvis’s Algorithm is O(n^2). Using
* Graham’s scan algorithm, we can find Convex Hull in O(nLogn) time.
*
* ### Implementation
*
* Sort points
* We first find the bottom-most point. The idea is to pre-process
* points be sorting them with respect to the bottom-most point. Once the points
* are sorted, they form a simple closed path.
* The sorting criteria is to use the orientation to compare angles without
* actually computing them (See the compare() function below) because
* computation of actual angles would be inefficient since trigonometric
* functions are not simple to evaluate.
*
* Accept or Reject Points
* Once we have the closed path, the next step is to traverse the path and
* remove concave points on this path using orientation. The first two points in
* sorted array are always part of Convex Hull. For remaining points, we keep
* track of recent three points, and find the angle formed by them. Let the
* three points be prev(p), curr(c) and next(n). If orientation of these points
* (considering them in same order) is not counterclockwise, we discard c,
* otherwise we keep it.
*
* @author [Lajat Manekar](https://github.com/Lazeeez)
*
*******************************************************************************/
#include <algorithm> /// for std::swap
#include <cstdlib> /// for mathematics and datatype conversion
#include <iostream> /// for IO operations
#include <stack> /// for std::stack
#include <vector> /// for std::vector
/******************************************************************************
* @namespace geometry
* @brief geometric algorithms
*******************************************************************************/
namespace geometry {
/******************************************************************************
* @namespace graham scan
* @brief convex hull algorithm
*******************************************************************************/
namespace grahamscan {
/******************************************************************************
* @struct Point
* @brief for X and Y co-ordinates of the co-ordinate.
*******************************************************************************/
struct Point {
int x, y;
};
// A global point needed for sorting points with reference
// to the first point Used in compare function of qsort()
Point p0;
/******************************************************************************
* @brief A utility function to find next to top in a stack.
* @param S Stack to be used for the process.
* @returns @param Point Co-ordinates of the Point <int, int>
*******************************************************************************/
Point nextToTop(std::stack<Point> *S) {
Point p = S->top();
S->pop();
Point res = S->top();
S->push(p);
return res;
}
/******************************************************************************
* @brief A utility function to return square of distance between p1 and p2.
* @param p1 Co-ordinates of Point 1 <int, int>.
* @param p2 Co-ordinates of Point 2 <int, int>.
* @returns @param int distance between p1 and p2.
*******************************************************************************/
int distSq(Point p1, Point p2) {
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
/******************************************************************************
* @brief To find orientation of ordered triplet (p, q, r).
* @param p Co-ordinates of Point p <int, int>.
* @param q Co-ordinates of Point q <int, int>.
* @param r Co-ordinates of Point r <int, int>.
* @returns @param int 0 --> p, q and r are collinear, 1 --> Clockwise,
* 2 --> Counterclockwise
*******************************************************************************/
int orientation(Point p, Point q, Point r) {
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
if (val == 0) {
return 0; // collinear
}
return (val > 0) ? 1 : 2; // clock or counter-clock wise
}
/******************************************************************************
* @brief A function used by library function qsort() to sort an array of
* points with respect to the first point
* @param vp1 Co-ordinates of Point 1 <int, int>.
* @param vp2 Co-ordinates of Point 2 <int, int>.
* @returns @param int distance between p1 and p2.
*******************************************************************************/
int compare(const void *vp1, const void *vp2) {
auto *p1 = static_cast<const Point *>(vp1);
auto *p2 = static_cast<const Point *>(vp2);
// Find orientation
int o = orientation(p0, *p1, *p2);
if (o == 0) {
return (distSq(p0, *p2) >= distSq(p0, *p1)) ? -1 : 1;
}
return (o == 2) ? -1 : 1;
}
/******************************************************************************
* @brief Prints convex hull of a set of n points.
* @param points vector of Point<int, int> with co-ordinates.
* @param size Size of the vector.
* @returns @param vector vector of Conver Hull.
*******************************************************************************/
std::vector<Point> convexHull(std::vector<Point> points, uint64_t size) {
// Find the bottom-most point
int ymin = points[0].y, min = 0;
for (int i = 1; i < size; i++) {
int y = points[i].y;
// Pick the bottom-most or chose the left-most point in case of tie
if ((y < ymin) || (ymin == y && points[i].x < points[min].x)) {
ymin = points[i].y, min = i;
}
}
// Place the bottom-most point at first position
std::swap(points[0], points[min]);
// Sort n-1 points with respect to the first point. A point p1 comes
// before p2 in sorted output if p2 has larger polar angle
// (in counterclockwise direction) than p1.
p0 = points[0];
qsort(&points[1], size - 1, sizeof(Point), compare);
// If two or more points make same angle with p0, Remove all but the one
// that is farthest from p0 Remember that, in above sorting, our criteria
// was to keep the farthest point at the end when more than one points have
// same angle.
int m = 1; // Initialize size of modified array
for (int i = 1; i < size; i++) {
// Keep removing i while angle of i and i+1 is same with respect to p0
while (i < size - 1 && orientation(p0, points[i], points[i + 1]) == 0) {
i++;
}
points[m] = points[i];
m++; // Update size of modified array
}
// If modified array of points has less than 3 points, convex hull is not
// possible
if (m < 3) {
return {};
};
// Create an empty stack and push first three points to it.
std::stack<Point> St;
St.push(points[0]);
St.push(points[1]);
St.push(points[2]);
// Process remaining n-3 points
for (int i = 3; i < m; i++) {
// Keep removing top while the angle formed by
// points next-to-top, top, and points[i] makes
// a non-left turn
while (St.size() > 1 &&
orientation(nextToTop(&St), St.top(), points[i]) != 2) {
St.pop();
}
St.push(points[i]);
}
std::vector<Point> result;
// Now stack has the output points, push them into the resultant vector
while (!St.empty()) {
Point p = St.top();
result.push_back(p);
St.pop();
}
return result; // return resultant vector with Convex Hull co-ordinates.
}
} // namespace grahamscan
} // namespace geometry