forked from dandelin/ViLT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_vqa.py
118 lines (99 loc) · 3.13 KB
/
demo_vqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import torch
import copy
import time
import requests
import io
import numpy as np
import re
import json
import urllib.request
import ipdb
from PIL import Image
from vilt.config import ex
from vilt.modules import ViLTransformerSS
from vilt.transforms import pixelbert_transform
from vilt.datamodules.datamodule_base import get_pretrained_tokenizer
@ex.automain
def main(_config):
_config = copy.deepcopy(_config)
loss_names = {
"itm": 0,
"mlm": 0,
"mpp": 0,
"vqa": 1,
"imgcls": 0,
"nlvr2": 0,
"irtr": 0,
"arc": 0,
}
tokenizer = get_pretrained_tokenizer(_config["tokenizer"])
with urllib.request.urlopen(
"https://github.com/dandelin/ViLT/releases/download/200k/vqa_dict.json"
) as url:
id2ans = json.loads(url.read().decode())
_config.update(
{
"loss_names": loss_names,
}
)
model = ViLTransformerSS(_config)
model.setup("test")
model.eval()
device = "cuda:0" if _config["num_gpus"] > 0 else "cpu"
model.to(device)
def infer(url, text):
try:
res = requests.get(url)
image = Image.open(io.BytesIO(res.content)).convert("RGB")
img = pixelbert_transform(size=384)(image)
img = img.unsqueeze(0).to(device)
except:
return False
batch = {"text": [text], "image": [img]}
with torch.no_grad():
encoded = tokenizer(batch["text"])
batch["text_ids"] = torch.tensor(encoded["input_ids"]).to(device)
batch["text_labels"] = torch.tensor(encoded["input_ids"]).to(device)
batch["text_masks"] = torch.tensor(encoded["attention_mask"]).to(device)
infer = model.infer(batch)
vqa_logits = model.vqa_classifier(infer["cls_feats"])
answer = id2ans[str(vqa_logits.argmax().item())]
return [np.array(image), answer]
inputs = [
gr.inputs.Textbox(
label="Url of an image.",
lines=5,
),
gr.inputs.Textbox(label="Question", lines=5),
]
outputs = [
gr.outputs.Image(label="Image"),
gr.outputs.Textbox(label="Answer"),
]
interface = gr.Interface(
fn=infer,
inputs=inputs,
outputs=outputs,
server_name="0.0.0.0",
server_port=8888,
examples=[
[
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
"What is the color of the flower?",
],
[
"https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_1.png",
"What is the mustache made of?",
],
[
"https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_2.png",
"How many slices of pizza are there?",
],
[
"https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_3.png",
"Does it appear to be rainy?",
],
],
)
interface.launch(debug=True)