-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathModel_pred.py
477 lines (452 loc) · 18.1 KB
/
Model_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
def read_mutfile(file_name):
'''Reading mutation file'''
mut_list = []
with open(file_name, 'r') as file:
for line in file:
if line.startswith('#'):
continue
elif line.strip():
mut_list.append(line.strip().split(' '))
file.close()
return mut_list
def seqfile_prep(uniq_id, seq_header, sequence, Gfile_dir):
'''Preparing fasta file for feature extraction.'''
f = open(Gfile_dir + '/' + uniq_id + '.fasta', "w+")
f.write(">%s.fasta \n%s" % (uniq_id, sequence))
f.close()
f = open(Gfile_dir + '/' + uniq_id, "w+")
f.write("%s\n%s" % (seq_header, sequence))
f.close()
def read_seq(fasta_seq, Gfile_dir):
'''Read sequence file, make it ready for feature extraction, and generate a unique ID.
Input: Fasta file
Outpt: A unique ID'''
seq_header = ''
sequence = ''
seq = open(fasta_seq, 'r')
for line in seq:
if line[0] == ">":
seq_header = line.strip()
else:
sequence = sequence + line.strip()
sequence = str(sequence)
seq_header = str(seq_header)
from hashlib import blake2b
h = blake2b(digest_size=4)
h.update(str(sequence).encode('utf-8'))
uniq_id = h.hexdigest()
uniq_id = str(uniq_id)
seqfile_prep(uniq_id, seq_header ,sequence, Gfile_dir)
return uniq_id
#convert one-letter amino acid to three-letter format
def translate_1aa3(one_letter):
trans = {'A': 'ALA', 'R': 'ARG', 'N': 'ASN', 'D': 'ASP', 'C': 'CYS', 'E': 'GLU', 'Q': 'GLN', 'G': 'GLY', 'H': 'HIS',
'I': 'ILE', 'L': 'LEU', 'K': 'LYS', 'M': 'MET', 'F': 'PHE', 'P': 'PRO', 'S': 'SER', 'T': 'THR', 'W': 'TRP',
'Y': 'TYR', 'V': 'VAL'}
return (trans[one_letter])
def get_options():
'''Argument parsing'''
parser = argparse.ArgumentParser(usage='Invalid arguments.', description='Program for predicting the change in stability (∆∆G(kcal/mol)) upon single point missense mutation.')
parser.add_argument('-file','--file', required=True, help='Input sequence file in FASTA format')
parser.add_argument('-mutation','--mutation', nargs='+', type=str, help='Inline mutation (example: A 32 G)')
parser.add_argument('-mutlist','--mutlist','--ml', '--mutation-list', action='store', type=str, dest='ml', help='Mutation-list (as provided in the example directory).')
parser.add_argument('-outdir',"--outdir", "--out-dir", action="store",type=str, dest="outdir", help="Output directory")
parser.add_argument("-out-file", "--out-file", action="store", type=str, dest="outfile", help="Output result file")
args = parser.parse_args()
if not os.path.isfile(args.file):
print('Error: Incorrect sequence file')
sys.exit(1)
seq_id = read_seq(args.file, 'Gen_Files')
print('A unique id for the sequence:', seq_id)
mut_file =None
if args.ml:
mut_data = read_mutfile(args.ml)
else:
mut_data =[]
mut_data.append(args.mutation)
outdir = os.getcwd()
outfile = 'Result'
if args.outdir: outdir = args.outdir
if args.outfile: outfile = args.outfile
return seq_id, mut_data, outdir, outfile
def feature_label_gen():
'''The following feature list is used.'''
# features
feature_label = []
feature_label.append('Temp')
feature_label.append('pH')
feature_label.append('Ala/NonAla')
feature_label.append('NET_VOL')
feature_label.append('NET_HPHO')
feature_label.append('FLEX')
feature_label.append('MUT_HPHO')
feature_label.append('MUT_POL')
feature_label.append('MUT_TYPE')
feature_label.append('MUT_SIZE')
feature_label.append('MUT_HHbonds')
feature_label.append('MUT_CHEM')
for i in range(0, 11):
feature_label.append('RES_Neighb' + str(i))
for i in range(0, 140):
feature_label.append('PSSM' + str(i))
for i in range(0, 160):
feature_label.append('psePSSM' + str(i))
feature_label.append('dF')
for i in range(0, 7):
feature_label.append('daaph' + str(i))
feature_label.append('aa_score')
for i in range(0, 4):
feature_label.append('spd33' + str(i))
feature_label.append('spotd')
for i in range(0, 5):
feature_label.append('z_scale' + str(i))
feature_label.append('Modif_GAAC')
for i in range(0, 3):
feature_label.append('DDGun_feature' + str(i))
feature_label.append('RSA')
feature_label.append('phi')
feature_label.append('psi')
for i in range(0, 12):
feature_label.append('mCSM_sign(' + str(i) + ')')
for i in range(0, 3):
feature_label.append('pharmaco_diff' + str(i))
return feature_label
def main(a, b, c):
#parse arguments
seq_id, mut_data, outdir, outfile = get_options()
#feature labels
feature_label = feature_label_gen()
params = {'colsample_bytree': 0.5, 'learning_rate': 0.05, 'max_depth': 9, 'alpha': 1.2, 'lambda': 2.0, 'gamma': 0.1,
'min_child_weight': 6, 'min_samples_leaf': 1, 'min_samples_split': 2, 'subsample': 1,
'max_features': 0.18}
#####optimizing max_depth and min_child_weight####
'''gridsearch_params = [
(max_depth, min_child_weight)
for max_depth in range(7, 11)
for min_child_weight in range(5, 9)
]
min_mae = float("Inf")
best_params = None
for max_depth, min_child_weight in gridsearch_params:
print ("CV with max_depth={}, min_child_weight={}".format(
max_depth,
min_child_weight))
# Update our parameters
params['max_depth'] = max_depth
params['min_child_weight'] = min_child_weight
cv_results = xgb.cv(
params,
dtrain=data_dmatrix,
num_boost_round=num_boost_round,
seed=42,
nfold=5,
metrics={'rmse'},
early_stopping_rounds=50
)
mean_mae = cv_results['test-rmse-mean'].min()
boost_rounds = cv_results['test-rmse-mean'].argmin()
print("\tRMSE {} for {} rounds".format(mean_mae, boost_rounds))
if mean_mae < min_mae:
min_mae = mean_mae
best_params = (max_depth, min_child_weight)
print("Best params: {}, {}, RMSE: {}".format(best_params[0], best_params[1], min_mae))'''
####optimizing colsample_bytree and subsample#####
'''gridsearch_params = [
(subsample, colsample)
for subsample in [i/10. for i in range(8,11)]
for colsample in [i/10. for i in range(3,8)]
]
# Define initial best params and RMSE
min_rmse = float("Inf")
best_params = None
for subsample, colsample in reversed(gridsearch_params):
print("CV with subsample={}, colsample_bytree={}".format(
subsample,
colsample))
#Update our parameters
params['subsample'] = subsample
params['colsample_bytree'] = colsample
# Run CV
cv_results = xgb.cv(
params,
data_dmatrix,
num_boost_round=num_boost_round,
seed=42,
nfold=5,
metrics={'rmse'},
early_stopping_rounds=800
)
# Update best MAE
mean_rmse = cv_results['test-rmse-mean'].min()
boost_rounds = cv_results['test-rmse-mean'].argmin()
print("\tRMSE {} for {} rounds".format(mean_rmse, boost_rounds))
if mean_rmse < min_rmse:
min_rmse = mean_rmse
best_params = (subsample, colsample)
print("Best params: {}, RMSE: {}".format(best_params, min_rmse))'''
# Learning rate optimization
'''min_rmse = float("Inf")
best_params = None
for lrt in [0.02, 0.03, 0.04, .07]:
print("CV with learning rate={}".format(lrt))
# We update our parameters
params['learning_rate'] = lrt
# Run and time CV
cv_results = xgb.cv(
params,
dtrain=data_dmatrix,
num_boost_round=num_boost_round,
seed=42,
nfold=5,
metrics=['rmse'],
early_stopping_rounds=100
)
# Update best score
mean_rmse = cv_results['test-rmse-mean'].min()
boost_rounds = cv_results['test-rmse-mean'].argmin()
print("\tRMSE {} for {} rounds\n".format(mean_rmse, boost_rounds))
if mean_rmse < min_rmse:
min_rmse = mean_rmse
best_params = lrt
print("Best params: {}, RMSE: {}".format(best_params, min_rmse))'''
###Alhpa and lambda optimization
'''gridsearch_params = [
(reg_alpha, reg_lambda)
for reg_alpha in [i/10. for i in range(10, 15)]
for reg_lambda in [i/10. for i in range(15, 21)]
]
min_rmse = float("Inf")
best_params = None
for reg_alpha, reg_lambda in gridsearch_params:
print ("CV with reg_alpha={}, reg_lambda={}".format(reg_alpha,reg_lambda))
#Update our parameters
params['alpha'] = reg_alpha
params['lambda'] = reg_lambda
cv_results = xgb.cv(
params,
dtrain=data_dmatrix,
num_boost_round=num_boost_round,
seed=42,
nfold=5,
metrics={'rmse'},
early_stopping_rounds=750)
mean_rmse = cv_results['test-rmse-mean'].min()
boost_rounds = cv_results['test-rmse-mean'].argmin()
print("\tRMSE {} for {} rounds".format(mean_rmse, boost_rounds))
if mean_rmse < min_rmse:
min_rmse = mean_rmse
best_params = (reg_alpha, reg_lambda)
print("Best params: {}, {}, RMSE: {}".format(best_params[0], best_params[1], min_rmse))'''
#optimizing min_sample_split and min_sample_leaf
'''gridsearch_params = [
(min_leaf, min_split)
for min_leaf in range(1, 10)
for min_split in range(2, 10)
]
min_rmse = float("Inf")
best_params = None
for min_leaf, min_split in gridsearch_params:
print ("CV with min_leaf={}, min_split={}".format(
min_leaf,
min_split))
# Update our parameters
params['min_samples_leaf'] = min_leaf
params['min_samples_split'] = min_split
cv_results = xgb.cv(
params,
dtrain=data_dmatrix,
num_boost_round=num_boost_round,
seed=42,
nfold=5,
metrics={'rmse'},
early_stopping_rounds=750
)
mean_rmse = cv_results['test-rmse-mean'].min()
boost_rounds = cv_results['test-rmse-mean'].argmin()
print("\tRMSE {} for {} rounds".format(mean_rmse, boost_rounds))
if mean_rmse < min_rmse:
min_rmse = mean_rmse
best_params = (min_leaf, min_split)
print("Best params: {}, {}, RMSE: {}".format(best_params[0], best_params[1], min_rmse))'''
#Gamma optimization
'''min_rmse = float("Inf")
best_params = None
for gm in [0.1, 0.2, 0.3, 0.4]:
print("CV with gamma ={}".format(gm))
#We update our parameters
params['gamma'] = gm
#Run and time CV
cv_results = xgb.cv(
params,
dtrain=data_dmatrix,
num_boost_round=num_boost_round,
seed=42,
nfold=5,
metrics=['rmse'],
early_stopping_rounds=750
)
#Update best score
mean_rmse = cv_results['test-rmse-mean'].min()
boost_rounds = cv_results['test-rmse-mean'].argmin()
print("\tRMSE {} for {} rounds\n".format(mean_rmse, boost_rounds))
if mean_rmse < min_rmse:
min_rmse = mean_rmse
best_params = gm
print("Best params: {}, RMSE: {}".format(best_params, min_rmse))'''
#Final Cross Validation
'''cv_results = xgb.cv(dtrain=data_dmatrix, params=params, nfold=5,
num_boost_round=300, as_pandas=True, seed=42, early_stopping_rounds=150, metrics=['rmse'])
print(cv_results.head)
print((cv_results["test-rmse-mean"]).idxmin(), (cv_results["test-rmse-mean"]).min())'''
#Visualizing Tree and feature Importance, SAVE MODEL
#xg_reg = xgb.train(params=params, dtrain=data_dmatrix, num_boost_round=300)
#xgb.plot_tree(xg_reg, num_trees=1)
##plt.show()
#xgb.plot_importance(xg_reg)
#plt.rcParams['figure.figsize'] = [10, 10]
#plt.show()
#joblib.dump(xg_reg, 'S2648reverse')
#xg_reg.save_model("S2648reverse_spd_spotd.model")
'''testdata_list = [['CAGI5_PTENboost','CAGI5_TPMT_PTEN', 'CAGI5_TPMT_PTEN'],
['CAGI5_TPMTboost', 'CAGI5_TPMT_PTEN', 'CAGI5_TPMT_PTEN'],
['CAGI5_TPMT_PTENboost', 'CAGI5_TPMT_PTEN', 'CAGI5_TPMT_PTEN'],
['Ssym_direct', 'Ssympdbsorted_direct', 'Ssym_direct'],
['Ssym_inverse', 'Ssympdbsorted_inverse', 'Ssym_inverse']]
for tst in testdata_list:'''
gen_file_dir = 'Gen_Files' #storage of internal files
test_model(a, b, c, seq_id, mut_data, gen_file_dir, feature_label, outdir, outfile)
def test_model(a, b, c, uniq_id, mut_data, dir, feature_label, outdir, outfile):
#Testing Model
pdbidc_last = 'NA'
features_list = []
mut_list = []
for r in mut_data:
mut_list.append(r[0]+' '+r[1]+' '+r[2])
mut_seqpos = int(r[1])
wild_res = r[0]
mut_res = r[2]
mut_info = translate_1aa3(wild_res) + '-' + str(mut_seqpos) + '-' + translate_1aa3(mut_res)
if uniq_id != pdbidc_last:
pdbidc_last = uniq_id
wildtype_features, wild_pharm_count = Feature_extract.features(uniq_id, mut_seqpos, wild_res, mut_res, 0, a, b, c, '25', '7', dir)
#features_list.append(Feature_extract.features(pdbidc, mut_seqpos, mut_res, wild_res, 0, a, b, c, r[8], r[9], neg_ddg))
else:
wildtype_features, wild_pharm_count = Feature_extract.features(uniq_id, mut_seqpos, wild_res, mut_res, 1, a, b, c, '25', '7', dir)
#features_list.append(Feature_extract.features(pdbidc, mut_seqpos, mut_res, wild_res, 1, a, b, c, r[8], r[9], neg_ddg))
pdbidc_PosMutRes = uniq_id + '_' + str(mut_seqpos) + mut_res
if os.path.exists(dir + '/' + pdbidc_PosMutRes + '.af2.pdb'):
print('Mutated pdb already existed')
else:
pdb_mutate(dir + '/', uniq_id, 'A', mut_info, mut_seqpos, mut_res)
#muttype_features, mutant_pharm_count = Feature_extract.features(uniq_id, mut_seqpos, mut_res, wild_res, 1, a, b, c, '25', '7', dir)
muttype_pharm_sign, mutant_pharm_count = mCSM_features.pahrmaco_sign(dir + '/', uniq_id + '.af2', 'A', wild_res, mut_seqpos)
#print(mutant_pharm_count)
wildtype_features = wildtype_features + Feature_extract.pharmcophore_count_diff(wild_pharm_count, mutant_pharm_count)
features_list.append(wildtype_features)
#preparing data for testing
features_list=list(np.array(features_list, dtype=np.float32))
data = pd.DataFrame(features_list)
data.columns = feature_label
test_dmatrix = xgb.DMatrix(data)
#prediction with weighted average ensemble model
Xfeatures = np.array(data)
ypred = ml.ens_predict(Xfeatures)
#ypred = xg_reg.predict(test_dmatrix)
'''from sklearn.metrics import mean_squared_error
print('PCC', np.corrcoef(ytest, ypred)[0, 1])
print('RMSE', np.sqrt(((ypred- ytest) ** 2).mean()))
print('MSE', mean_squared_error(ytest, ypred))
print('MAE', np.mean(np.absolute(ypred-ytest)))'''
pred_ddG = list(ypred)
mut_pred_ddG = []
for i in range(len(mut_list)):
mut_pred_ddG.append([mut_list[i],pred_ddG[i]])
'''f = open(dir+'/'+uniq_id+'_result.txt', "w+")
print('#Mut\t∆∆G(kcal/mol)')
f.write('Mut\t∆∆G(kcal/mol)\n')
for i in range(len(mut_list)):
f.write("%s\t%s\n" %(mut_list[i], pred_ddG[i]))
f.close()'''
f = open(outdir + '/' + outfile + '.txt', "w+")
print('#Mut\t∆∆G(kcal/mol)')
f.write('Mut\t∆∆G(kcal/mol)\n')
for i in range(len(mut_list)):
f.write("%s\t%s\n" % (mut_list[i], pred_ddG[i]))
print(mut_list[i], '\t', pred_ddG[i])
f.close()
#Feature Importance using xgboost
#feature_imp = xg_reg.get_score(importance_type='gain')
#print (feature_imp)
'''for key, value in feature_imp.items():
print (key,"\t",value)'''
#Feature Importance using Mutual Information metric
'''from sklearn.feature_selection import SelectKBest
import matplotlib.pyplot as plt
from sklearn.feature_selection import mutual_info_regression
# training and feature selection
MIf_selector = SelectKBest(score_func=mutual_info_regression, k='all').fit(f_datatrain, f_datalabel)
#fitting a model
#MIf_selector.fit =(f_datatrain, f_datalabel)
#transform train and test input
X_MIfs = MIf_selector.transform(f_datatrain)
#Xtest_MIfs = MIf_selector.transform(Xtest)
# Plot the scores for the features
plt.bar([i for i in range(len(MIf_selector.scores_))], MIf_selector.scores_)
plt.xlabel("feature index")
plt.ylabel("Estimated MI value")
plt.show()
print('####Feature Importance using Mutual Information metric####')
for i in MIf_selector.scores_:
print(i)
#https://towardsdatascience.com/how-to-perform-feature-selection-for-regression-problems-c928e527bbfa
##Feature selection using Correlation metric##
from sklearn.feature_selection import f_regression
f_selector = SelectKBest(score_func=f_regression, k='all').fit(f_datatrain, f_datalabel)
X_MIfs = f_selector.transform(f_datatrain)
print('####Feature Importance using Correlation Metric####')
for i in f_selector.scores_:
print(i)
##Feature selection uisng MRMR##
from sklearn.feature_selection import f_regression
# inputs:
# X: pandas.DataFrame, features
# y: pandas.Series, target variable
# K: number of features to select
X = pd.DataFrame(X)
y = pd.Series(y)
# compute F-statistics and initialize correlation matrix
F = pd.Series(f_regression(X, y)[0], index = X.columns)
corr = pd.DataFrame(.00001, index = X.columns, columns = X.columns)
# initialize list of selected features and list of excluded features
selected = []
not_selected = X.columns.to_list()
K = len(X.columns)
K= 330
# repeat K times
for i in range(K):
# compute (absolute) correlations between the last selected feature and all the (currently) excluded features
if i > 0:
last_selected = selected[-1]
corr.loc[not_selected, last_selected] = X[not_selected].corrwith(X[last_selected]).abs().clip(.00001)
# compute FCQ score for all the (currently) excluded features (this is Formula 2)
score = F.loc[not_selected] / corr.loc[not_selected, selected].mean(axis = 1).fillna(.00001)
# find best feature, add it to selected and remove it from not_selected
best = score.index[score.argmax()]
selected.append(best)
not_selected.remove(best)
print('Selected Features:', selected)
print('Features ignored:', not_selected)'''
import argparse
import sys, getopt
import os
import numpy as np
import xgboost as xgb
import json
import pandas as pd
import joblib
import Feature_extract
from mutate_pdb import pdb_mutate
from features import mCSM_features
import ml
import pickle
import matplotlib.pyplot as plt