Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

It seems that the mmcv version does not match. #17

Open
limengfei3675 opened this issue Jul 15, 2020 · 5 comments
Open

It seems that the mmcv version does not match. #17

limengfei3675 opened this issue Jul 15, 2020 · 5 comments

Comments

@limengfei3675
Copy link

Hello, we use the command: python train.py ../configs/faster_rcnn_r152_fpn_TSD_1x.py --work_dir exp/TSD_r152/ --validate to train the network, throwing TypeError: init() got an unexpected keyword argument'bbox_roi_extractor'

python train.py ../configs/faster_rcnn_r152_fpn_TSD_1x.py --work_dir exp/TSD_r152/ --validate
2020-07-15 13:31:48,830 - mmdet - INFO - Environment info:

sys.platform: linux
Python: 3.7.5 (default, Oct 25 2019, 15:51:11) [GCC 7.3.0]
CUDA available: True
CUDA_HOME: /usr/local/cuda-10.1
NVCC: Cuda compilation tools, release 10.1, V10.1.243
GPU 0: GeForce RTX 2080 Ti
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
PyTorch: 1.5.0
PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) Math Kernel Library Version 2019.0.5 Product Build 20190808 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v0.21.1 (Git Hash 7d2fd500bc78936d1d648ca713b901012f470dbc)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 10.2
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
  • CuDNN 7.6.5
  • Magma 2.5.2
  • Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_INTERNAL_THREADPOOL_IMPL -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,

TorchVision: 0.6.0
OpenCV: 4.2.0
MMCV: 1.0.2
MMDetection: 2.3.0rc0+unknown
MMDetection Compiler: GCC 7.3
MMDetection CUDA Compiler: 10.1

2020-07-15 13:31:48,831 - mmdet - INFO - Distributed training: False
2020-07-15 13:31:48,831 - mmdet - INFO - Config:
/home/along/lmf_workspace/mmdetection/TSD-master/configs/faster_rcnn_r152_fpn_TSD_1x.py

model settings

model = dict(
type='FasterRCNN',
pretrained='torchvision://resnet152',
backbone=dict(
type='ResNet',
depth=152,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='TSDSharedFCBBoxHead',
featmap_strides=[4, 8, 16, 32],
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
cls_pc_margin=0.3,
loc_pc_margin=0.3,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))

model training and testing settings

train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False))
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.00, nms=dict(type='nms', iou_thr=0.5), max_per_img=100)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)

dataset settings

dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')

optimizer

optimizer = dict(type='SGD', lr=0.04, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))

learning policy

lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=3600,
warmup_ratio=1.0 / 32,
step=[9, 12])
checkpoint_config = dict(interval=1)

yapf:disable

log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])

yapf:enable

runtime settings

total_epochs = 14
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/faster_rcnn_r50_fpn_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]

Traceback (most recent call last):
File "train.py", line 151, in
main()
File "train.py", line 124, in main
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
File "/home/along/lmf_workspace/mmdetection/mmdetection-master/mmdet/models/builder.py", line 67, in build_detector
return build(cfg, DETECTORS, dict(train_cfg=train_cfg, test_cfg=test_cfg))
File "/home/along/lmf_workspace/mmdetection/mmdetection-master/mmdet/models/builder.py", line 32, in build
return build_from_cfg(cfg, registry, default_args)
File "/home/along/anaconda3/envs/lmf/lib/python3.7/site-packages/mmcv/utils/registry.py", line 167, in build_from_cfg
return obj_cls(**args)
TypeError: init() got an unexpected keyword argument 'bbox_roi_extractor'

@songguanglu
Copy link
Collaborator

Hi,TSD project has not been adapted to MMdetV2.0 and the code is wrote under v1.x version (The old v1.x branch works with PyTorch 1.1 to 1.4). You can use v1.x MMdet and the corresponding MMCV to run this code.

@LoveIsAGame
Copy link

I have also encountered this problem recently. Has this problem been well solved?

@LoveIsAGame
Copy link

Has anyone ported the code to mmdet2.0?

@zhaoxin111
Copy link

zhaoxin111 commented Nov 24, 2020

refer to my environment:

PyTorch: 1.3.1
TorchVision: 0.4.2
OpenCV: 4.4.0
MMCV: 0.4.3
MMDetection: 1.1.0+144fc96
MMDetection Compiler: GCC 5.4
MMDetection CUDA Compiler: 10.2

@LoveIsAGame
Copy link

@zhaoxin111 how to install mmdetection1.1.0 . i just can install mmdet2.6? can give me some details? THANKS!!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants