-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandler.py
121 lines (97 loc) · 4.59 KB
/
handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import logging
import base64
import re
import socket
import time
import redis
import cloudpickle
from wukongdnc.wukong.dc_executor import DivideAndConquerExecutor
from wukongdnc.constants import REDIS_IP_PRIVATE
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(asctime)s] %(levelname)s: %(message)s')
if logger.handlers:
for handler in logger.handlers:
handler.setFormatter(formatter)
root = logging.getLogger()
if root.handlers:
for handler in root.handlers:
handler.setFormatter(formatter)
def funcA(args):
pass
def funcB(args):
pass
def lambda_handler(event, context):
"""
Called by AWS Lambda. This is the "main" method of the AWS Lambda function.
We configure the AWS Lambda function to call this function by specifying the filename and the function name.
If we wanted to have several different "handlers" (i.e., functions that execute on the AWS Lambda function),
we could set things up like this:
def funcA(args):
pass
def funcB(args):
pass
def lambda_handler(event, context):
target = event["target"] # target func
args = event["args"] # target function args
# If we've specified 'funcA', then call funcA().
if target == "funcA":
return funcA(args)
# Alternatively, if we've specified 'funcB', then call funcB().
elif target == "funcB":
return funcB(args)
# The user specified some invalid target function/handler, so raise an error.
else:
raise ValueError("Invalid target function specified: " + str(target))
Arguments:
----------
event (dict):
A JSON-formatted document that contains data for the Lambda to process. The AWS Lambda runtime converts
the event to a Python (or whatever language) object and passes it to our function code. Generally, it will
be a dict, but it could be a list, string, integer, float, or None (i.e., null).
The event object contains information from the invoking service. The entity that invokes the AWS Lambda
function determines the structure and contents of the event.
This is the object through which we pass arguments from the client (user) to the Executors, or from Executors
to other Executors (when we invoke AWS Lambda functions from other AWS Lambda functions).
See: https://docs.aws.amazon.com/lambda/latest/dg/python-handler.html
context (awslambdaric.lambda_context.LambdaContext):
When Lambda runs this function, it passes it a context object. This is that context object.
The context object provides methods and properties that provide information about the invocation,
function, and execution environment.
See: https://docs.aws.amazon.com/lambda/latest/dg/python-context.html
"""
start_time = time.time()
rc = redis.Redis(host = REDIS_IP_PRIVATE, port = 6379)
logger.debug("Invocation received.")
# Extract all of the data from the payload.
# first_executor = event["first_executor"]
state = cloudpickle.loads(base64.b64decode(event["state"]))
problem = cloudpickle.loads(base64.b64decode(event["problem"]))
problem_type = cloudpickle.loads(base64.b64decode(event["problem_type"]))
result_type = cloudpickle.loads(base64.b64decode(event["result_type"]))
null_result = cloudpickle.loads(base64.b64decode(event["null_result"]))
stop_result = cloudpickle.loads(base64.b64decode(event["stop_result"]))
logger.debug("Problem: " + str(problem))
logger.debug("Problem type: " + str(problem_type))
logger.debug("Result type: " + str(result_type))
logger.debug("Null result: " + str(null_result))
logger.debug("Stop result: " + str(stop_result))
###################################################################################
# CREATE() could be called here if we wanted it to be in the AWS Lambda function. #
###################################################################################
# Create the Executor object.
executor = DivideAndConquerExecutor(
state = state,
problem = problem,
problem_type = problem_type,
result_type = result_type,
null_result = null_result,
stop_result = stop_result
)
logger.debug("Starting executor.")
executor.start()
executor.join()
end_time = time.time()
duration = end_time - start_time
logger.debug("Executor finished. Time elapsed: %f seconds." % duration)
rc.lpush("durations", duration)