From d9e0c8c171678610a5ec281287b90a17ef29263f Mon Sep 17 00:00:00 2001 From: CorentinPtrl Date: Tue, 1 Mar 2022 17:55:17 +0100 Subject: [PATCH] Implement Ftrl Optimizer --- Keras/Optimizers.cs | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) diff --git a/Keras/Optimizers.cs b/Keras/Optimizers.cs index 1817acb..bfecd71 100644 --- a/Keras/Optimizers.cs +++ b/Keras/Optimizers.cs @@ -184,4 +184,37 @@ public Nadam(float lr = 0.002f, float beta_1 = 0.9f, float beta_2 = 0.999f) Init(); } } + + + /// + /// "Follow The Regularized Leader" (FTRL) is an optimization algorithm developed at Google for click-through rate prediction in the early 2010s. + /// It is most suitable for shallow models with large and sparse feature spaces. + /// + /// + public class Ftrl : Base + { + /// + /// Initializes a new instance of the class. + /// + /// float >= 0. Learning rate. + /// float >= 0. Learning rate Power. + /// float <= 0. Initial Accumulator Value. + /// float <= 0. Lambda 1 Regularization Strength. + /// float <= 0. Lambda 2 Regularization Strength. + /// float <= 0. Lambda 2 Shrinkage Regularization Strength. + /// floats, 0 < beta < 1. Generally close to 1. + public Nadam(float lr = 0.001f,float lrp = -0.5, float iav = 0.1f, float l1rs = 0.0f, float l2rs = 0.0f, float l2srs = 0.0f, float beta = 0.0f) + { + Parameters["learning_rate"] = lr; + Parameters["learning_rate_power"] = lrp; + Parameters["initial_accumulator_value"] = iav; + Parameters["l1_regularization_strength"] = l1rs; + Parameters["l2_regularization_strength"] = l2rs; + Parameters["l2_shrinkage_regularization_strength"] = l2srs; + Parameters["beta"] = beta; + + PyInstance = Instance.keras.optimizers.Ftrl; + Init(); + } + } }