forked from aHuiWang/CIKM2020-S3Rec
-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathutils.py
317 lines (272 loc) · 9.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# -*- coding: utf-8 -*-
# @Time : 2020/3/30 11:06
# @Author : Hui Wang
import numpy as np
import math
import random
import os
import json
import pickle
from scipy.sparse import csr_matrix
import torch
import torch.nn.functional as F
def set_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# some cudnn methods can be random even after fixing the seed
# unless you tell it to be deterministic
torch.backends.cudnn.deterministic = True
def check_path(path):
if not os.path.exists(path):
os.makedirs(path)
print(f'{path} created')
def neg_sample(item_set, item_size): # 前闭后闭
item = random.randint(1, item_size - 1)
while item in item_set:
item = random.randint(1, item_size - 1)
return item
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, checkpoint_path, patience=7, verbose=False, delta=0):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.checkpoint_path = checkpoint_path
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.delta = delta
def compare(self, score):
for i in range(len(score)):
# 有一个指标增加了就认为是还在涨
if score[i] > self.best_score[i]+self.delta:
return False
return True
def __call__(self, score, model):
# score HIT@10 NDCG@10
if self.best_score is None:
self.best_score = score
self.score_min = np.array([0]*len(score))
self.save_checkpoint(score, model)
elif self.compare(score):
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(score, model)
self.counter = 0
def save_checkpoint(self, score, model):
'''Saves model when validation loss decrease.'''
if self.verbose:
# ({self.score_min:.6f} --> {score:.6f}) # 这里如果是一个值的话输出才不会有问题
print(f'Validation score increased. Saving model ...')
torch.save(model.state_dict(), self.checkpoint_path)
self.score_min = score
def kmax_pooling(x, dim, k):
index = x.topk(k, dim=dim)[1].sort(dim=dim)[0]
return x.gather(dim, index).squeeze(dim)
def avg_pooling(x, dim):
return x.sum(dim=dim)/x.size(dim)
def generate_rating_matrix_valid(user_seq, num_users, num_items):
# three lists are used to construct sparse matrix
row = []
col = []
data = []
for user_id, item_list in enumerate(user_seq):
for item in item_list[:-2]: #
row.append(user_id)
col.append(item)
data.append(1)
row = np.array(row)
col = np.array(col)
data = np.array(data)
rating_matrix = csr_matrix((data, (row, col)), shape=(num_users, num_items))
return rating_matrix
def generate_rating_matrix_test(user_seq, num_users, num_items):
# three lists are used to construct sparse matrix
row = []
col = []
data = []
for user_id, item_list in enumerate(user_seq):
for item in item_list[:-1]: #
row.append(user_id)
col.append(item)
data.append(1)
row = np.array(row)
col = np.array(col)
data = np.array(data)
rating_matrix = csr_matrix((data, (row, col)), shape=(num_users, num_items))
return rating_matrix
def get_user_seqs(data_file):
lines = open(data_file).readlines()
user_seq = []
item_set = set()
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split(' ')
items = [int(item) for item in items]
user_seq.append(items)
item_set = item_set | set(items)
max_item = max(item_set)
num_users = len(lines)
num_items = max_item + 2
valid_rating_matrix = generate_rating_matrix_valid(user_seq, num_users, num_items)
test_rating_matrix = generate_rating_matrix_test(user_seq, num_users, num_items)
return user_seq, max_item, valid_rating_matrix, test_rating_matrix
def get_user_seqs_long(data_file):
lines = open(data_file).readlines()
user_seq = []
long_sequence = []
item_set = set()
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split(' ')
items = [int(item) for item in items]
long_sequence.extend(items) # 后面的都是采的负例
user_seq.append(items)
item_set = item_set | set(items)
max_item = max(item_set)
return user_seq, max_item, long_sequence
def get_user_seqs_and_sample(data_file, sample_file):
lines = open(data_file).readlines()
user_seq = []
item_set = set()
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split(' ')
items = [int(item) for item in items]
user_seq.append(items)
item_set = item_set | set(items)
max_item = max(item_set)
lines = open(sample_file).readlines()
sample_seq = []
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split(' ')
items = [int(item) for item in items]
sample_seq.append(items)
assert len(user_seq) == len(sample_seq)
return user_seq, max_item, sample_seq
def get_item2attribute_json(data_file):
item2attribute = json.loads(open(data_file).readline())
attribute_set = set()
for item, attributes in item2attribute.items():
attribute_set = attribute_set | set(attributes)
attribute_size = max(attribute_set) # 331
return item2attribute, attribute_size
def get_metric(pred_list, topk=10):
NDCG = 0.0
HIT = 0.0
MRR = 0.0
# [batch] the answer's rank
for rank in pred_list:
MRR += 1.0 / (rank + 1.0)
if rank < topk:
NDCG += 1.0 / np.log2(rank + 2.0)
HIT += 1.0
return HIT /len(pred_list), NDCG /len(pred_list), MRR /len(pred_list)
def precision_at_k_per_sample(actual, predicted, topk):
num_hits = 0
for place in predicted:
if place in actual:
num_hits += 1
return num_hits / (topk + 0.0)
def precision_at_k(actual, predicted, topk):
sum_precision = 0.0
num_users = len(predicted)
for i in range(num_users):
act_set = set(actual[i])
pred_set = set(predicted[i][:topk])
sum_precision += len(act_set & pred_set) / float(topk)
return sum_precision / num_users
def recall_at_k(actual, predicted, topk):
sum_recall = 0.0
num_users = len(predicted)
true_users = 0
for i in range(num_users):
act_set = set(actual[i])
pred_set = set(predicted[i][:topk])
if len(act_set) != 0:
sum_recall += len(act_set & pred_set) / float(len(act_set))
true_users += 1
return sum_recall / true_users
def apk(actual, predicted, k=10):
"""
Computes the average precision at k.
This function computes the average precision at k between two lists of
items.
Parameters
----------
actual : list
A list of elements that are to be predicted (order doesn't matter)
predicted : list
A list of predicted elements (order does matter)
k : int, optional
The maximum number of predicted elements
Returns
-------
score : double
The average precision at k over the input lists
"""
if len(predicted)>k:
predicted = predicted[:k]
score = 0.0
num_hits = 0.0
for i,p in enumerate(predicted):
if p in actual and p not in predicted[:i]:
num_hits += 1.0
score += num_hits / (i+1.0)
if not actual:
return 0.0
return score / min(len(actual), k)
def mapk(actual, predicted, k=10):
"""
Computes the mean average precision at k.
This function computes the mean average prescision at k between two lists
of lists of items.
Parameters
----------
actual : list
A list of lists of elements that are to be predicted
(order doesn't matter in the lists)
predicted : list
A list of lists of predicted elements
(order matters in the lists)
k : int, optional
The maximum number of predicted elements
Returns
-------
score : double
The mean average precision at k over the input lists
"""
return np.mean([apk(a, p, k) for a, p in zip(actual, predicted)])
def ndcg_k(actual, predicted, topk):
res = 0
for user_id in range(len(actual)):
k = min(topk, len(actual[user_id]))
idcg = idcg_k(k)
dcg_k = sum([int(predicted[user_id][j] in
set(actual[user_id])) / math.log(j+2, 2) for j in range(topk)])
res += dcg_k / idcg
return res / float(len(actual))
# Calculates the ideal discounted cumulative gain at k
def idcg_k(k):
res = sum([1.0/math.log(i+2, 2) for i in range(k)])
if not res:
return 1.0
else:
return res