Skip to content
forked from ethanluoyc/magi

Reinforcement learning library in JAX.

License

Notifications You must be signed in to change notification settings

RL-code-lib/magi

 
 

Repository files navigation

Magi RL library in JAX

Installation | Agents | Examples | Contributing | Documentation

pytest Code style: black

Magi is a RL library developed on top of Acme.

Note: Magi is in alpha development so expect breaking changes!

Installation

  1. Create a new Python virtual environment
python3 -m venv venv
source venv/bin/activate
  1. Install dependencies and the package in editable mode by running
pip install -U pip setuptools wheel
pip install -r requirements/base.txt # This uses pinned dependencies, you may adjust this for your needs.
pip install -e .

If for some reason installation fails, first check out GitHub Actions badge to see if this fails on the latest CI run. If the CI is successful, then it's likely that there are some issues to setting up your own environment. Refer to .github/workflows/ci.yaml as the official source for how to set up the environment.

Agents

magi includes popular RL algorithm implementation such as SAC, DrQ, SAC-AE and PETS. Refer to magi/agents for a full list of agents.

Examples

Check out magi/examples where we include examples of using our RL agents on popular benchmark tasks.

Testing

On Linux, you can run tests with

JAX_PLATFORM_NAME=cpu pytest -n `grep -c ^processor /proc/cpuinfo` magi

Contributing

Refer to CONTRIBUTING.md.

Acknowledgements

Magi is inspired by many of the open-source RL projects out there. Here is a (non-exhaustive) list of related libraries and packages that Magi references:

License

Apache License 2.0

Citation

If you use Magi in your work, please cite us according to the CITATION file. You may learn more about the CITATION file from here.

About

Reinforcement learning library in JAX.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.4%
  • Other 0.6%