Skip to content

Source code for "Aspect-Aware Graph Attention Network for Heterogeneous Information Networks"

License

Notifications You must be signed in to change notification settings

Qidong-Liu/Aspect-Aware-Graph-Attention-Network

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AGAT

Source code for paper "Aspect-Aware Graph Attention Network for Heterogeneous Information Networks"

Requirements

The code has been tested under Python 3.8, with the following packages installed (along with their dependencies):

  • torch >= 1.9.0
  • pytorch-lightning >= 1.4.4
  • torchmetrics >= 0.5.0
  • torch-scatter >= 2.0.9
  • torch-sparse >= 0.6.12
  • numpy
  • pandas
  • tqdm
  • yaml

unzip

Since git limits the size of a single file upload (<25M), we divide the datasets and the pre-trained models into multiple volumes. Please unzip the files in the directories dataandlightning_logs first.

cd ./data
sh do_unzip.sh
cd ../lightning_logs
sh do_unzip.sh

Files in the folder

  • /data: Store the dataset and prepared data.
  • /dataloader: Codes of the dataloader.
  • /models: Codes of the AGAT model , link-prediction task and semi-supervised classification task .
  • /utils: Codes for data preparing and some other utils.
  • /lightning_logs: Store the trained model parameters, setting files, checkpoints, logs and results.
  • main.py: The main entrance of running.

Basic usage

Link Prediction Task

train AGAT by

# train AGAT .
python main.py --setting_path *.yaml

#  for example
#  youtube
python main.py --setting_path lightning_logs/youtube_best/yot_settings.yaml
# amazon
python main.py --setting_path lightning_logs/amazon_best/ama_settings.yaml
# twitter
python main.py --setting_path lightning_logs/twitter_best/tiw_settings.yaml

The *.yaml is the configuration file.

And if you want to adjust the hyperparameters of the model, you can modify it in *.yaml, or create a similar configuration file, and specify --setting_path like this:

python main.py --setting_path yourpath.yaml

Checkpoints, logs, and results during training will be stored in the directory: ./lightning_logs/version_0

And you can run tensorboard --logdir lightning_logs/version_0 to monitor the training progress.

Load the pre-trained model and predict the test dataset by:

# test 
python main.py --test --setting_path *.yaml --ckpt_path *.ckpt

# for example
#  youtube
python main.py --test --setting_path lightning_logs/youtube_best/yot_settings.yaml --ckpt_path lightning_logs/youtube_best/checkpoints/pre-trained.ckpt
# amazon
python main.py --test --setting_path lightning_logs/amazon_best/ama_settings.yaml --ckpt_path lightning_logs/amazon_best/checkpoints/pre-trained.ckpt
# twitter
python main.py --test --setting_path lightning_logs/twitter_best/tiw_settings.yaml --ckpt_path lightning_logs/twitter_best/checkpoints/pre-trained.ckpt

The result will be stored in the directory: ./lightning_logs/version_0

If you want to load your trained model to predict the test data set, you only need to change --setting_path and --ckpt_pathlike this:

python main.py --test --setting_path yourpath.yaml --ckpt_path yourpath.ckpt

PS: Keep the configuration file unchanged during training and testing.

Semi-supervised Classification Task

training and testing are similar to the Link Prediction Task.

train:

#  AIFB
python main.py --setting_path lightning_logs/aifb_best/aifb_settings.yaml

# PubMed
python main.py --setting_path lightning_logs/pub_best/pub_settings.yaml

test:

#  AIFB
python main.py --test --setting_path lightning_logs/aifb_best/aifb_settings.yaml --ckpt_path lightning_logs/aifb_best/checkpoints/pre-trained.ckpt

# PubMed
python main.py --test --setting_path lightning_logs/pub_best/pub_settings.yaml --ckpt_path lightning_logs/pub_best/checkpoints/pre-trained.ckpt

About

Source code for "Aspect-Aware Graph Attention Network for Heterogeneous Information Networks"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published