-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
56 lines (46 loc) · 1.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
from typing import List
import cv2
import os
# Define vocabulary and mappings
vocab = [x for x in "abcdefghijklmnopqrstuvwxyz'?!123456789 "]
char_to_num = tf.keras.layers.StringLookup(vocabulary=vocab, oov_token="")
num_to_char = tf.keras.layers.StringLookup(
vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True
)
# Function to load video and preprocess frames
def load_video(path: str) -> List[float]:
cap = cv2.VideoCapture(path)
frames = []
for _ in range(int(cap.get(cv2.CAP_PROP_FRAME_COUNT))):
ret, frame = cap.read()
frame = tf.image.rgb_to_grayscale(frame)
frames.append(frame[190:236, 80:220, :])
cap.release()
# Normalize frames by mean and standard deviation
mean = tf.math.reduce_mean(frames)
std = tf.math.reduce_std(tf.cast(frames, tf.float32))
return tf.cast((frames - mean), tf.float32) / std
# Function to load alignments and convert to numerical values
def load_alignments(path: str) -> List[str]:
with open(path, 'r') as f:
lines = f.readlines()
tokens = []
for line in lines:
line = line.split()
if line[2] != 'sil': # Ignore silence tokens
tokens = [*tokens, ' ', line[2]]
return char_to_num(tf.reshape(tf.strings.unicode_split(tokens, input_encoding='UTF-8'), (-1)))[1:]
# Function to load data (video and alignment) for a given path
def load_data(path: str):
path = bytes.decode(path.numpy())
file_name = path.split('\\')[-1].split('.')[0]
# Construct paths using string concatenation instead of os.path.join
video_path = './data//s1//' + file_name + '.mpg'
alignment_path = './data/alignments/s1/' + file_name +'.align'
# Convert alignment path to absolute path
actual_alignment_path = os.path.abspath(alignment_path)
# Load video and alignment data
frames = load_video(video_path)
alignments = load_alignments(actual_alignment_path)
return frames, alignments