diff --git a/CAT/model/IRT.py b/CAT/model/IRT.py index cd612fb..250a01c 100644 --- a/CAT/model/IRT.py +++ b/CAT/model/IRT.py @@ -167,29 +167,42 @@ def _loss_function(self, pred, real): return -(real * torch.log(0.0001 + pred) + (1 - real) * torch.log(1.0001 - pred)).mean() def get_alpha(self, question_id): + """ get alpha of one question + Args: + question_id: int, question id + Returns: + alpha of the given question + """ return self.model.alpha.weight.data.numpy()[question_id] def get_beta(self, question_id): + """ get beta of one question + Args: + question_id: int, question id + Returns: + beta of the given question + """ return self.model.beta.weight.data.numpy()[question_id] def get_theta(self, student_id): + """ get theta of one student + Args: + student_id: int, student id + Returns: + theta of the given student + """ return self.model.theta.weight.data.numpy()[student_id] - - def get_iif(self, student_id, question_id): - device = self.config['device'] - sid = torch.LongTensor([student_id]).to(device) - qid = torch.LongTensor([question_id]).to(device) - theta = self.model.theta(sid).clone().detach().requires_grad_(True) - alpha = self.model.alpha(qid).clone().detach() - beta = self.model.beta(qid).clone().detach() - pred = (alpha * theta).sum(dim=1, keepdim=True) + beta - pred = torch.sigmoid(pred) - pred.backward() - pred = pred.data.numpy()[0][0] - grad = theta.grad.data.numpy()[0][0] - return grad ** 2 / (pred * (1 - pred)) - def kli(self, x, student_id, question_id, alpha, beta, pred_estimate): + def kli(self, x, alpha, beta, pred_estimate): + """ The formula of KL information. Used for integral. + Args: + x: theta of student sid + alpha: alpha of question qid + beta: beta of question qid + pred_estimate: the estimated probability of student sid + Returns: + the formula with x + """ pred = alpha * x + beta pred = 1 / (1 + np.exp(-pred)) q_estimate = 1 - pred_estimate @@ -197,6 +210,14 @@ def kli(self, x, student_id, question_id, alpha, beta, pred_estimate): return pred_estimate * np.log(pred_estimate / pred) + q_estimate * np.log((q_estimate / q)) def get_kli(self, student_id, question_id, n): + """ get KL information + Args: + student_id: int, student id + question_id: int, question id + n: int, the number of iteration + Returns: + v: float, KL information + """ device = self.config['device'] sid = torch.LongTensor([student_id]).to(device) qid = torch.LongTensor([question_id]).to(device) @@ -208,9 +229,25 @@ def get_kli(self, student_id, question_id, n): c = 3 low = theta - c / np.sqrt(n) high = theta + c / np.sqrt(n) - v, err = integrate.quad(self.kli, low, high, args=(sid, qid, alpha, beta, pred_estimate)) + v, err = integrate.quad(self.kli, low, high, args=(alpha, beta, pred_estimate)) return v + def get_fisher(self, student_id, question_id): + """ get Fisher information + Args: + student_id: int, student id + question_id: int, question id + Returns: + fisher_info: matrix(num_dim * num_dim), Fisher information + """ + device = self.config['device'] + sid = torch.LongTensor([student_id]).to(device) + qid = torch.LongTensor([question_id]).to(device) + alpha = self.model.alpha(qid).clone().detach() + pred = self.model(sid, qid).data + q = 1 - pred + fisher_info = (q*pred*(alpha * alpha.T)).numpy() + return fisher_info diff --git a/CAT/strategy/MFI_strategy.py b/CAT/strategy/MFI_strategy.py index a90230d..f4fde54 100644 --- a/CAT/strategy/MFI_strategy.py +++ b/CAT/strategy/MFI_strategy.py @@ -7,23 +7,35 @@ class MFIStrategy(AbstractStrategy): + """ + Maximum Fisher Information Strategy + D-opt Strategy when using MIRT(num_dim != 1) + """ def __init__(self): super().__init__() + self.I = None @property def name(self): return 'Maximum Fisher Information Strategy' def adaptest_select(self, model: AbstractModel, adaptest_data: AdapTestDataset): - assert hasattr(model, 'get_iif'), \ - 'the models must implement get_iif method' + assert hasattr(model, 'get_fisher'), \ + 'the models must implement get_fisher method' + if self.I is None: + self.I = [np.zeros((model.model.num_dim, model.model.num_dim))] * adaptest_data.num_students selection = {} + n = len(adaptest_data.tested[0]) for sid in range(adaptest_data.num_students): untested_questions = np.array(list(adaptest_data.untested[sid])) - untested_iif = [] + untested_dets = [] + untested_fisher = [] for qid in untested_questions: - untested_iif.append(model.get_iif(sid, qid)) - j = np.argmax(untested_iif) + fisher_info = model.get_fisher(sid, qid) + untested_fisher.append(fisher_info) + untested_dets.append(np.linalg.det(self.I[sid] + fisher_info)) + j = np.argmax(untested_dets) selection[sid] = untested_questions[j] + self.I[sid] += untested_fisher[j] return selection \ No newline at end of file