forked from bigdata-ustc/EduCAT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bobcat_train.py
373 lines (338 loc) · 15.4 KB
/
bobcat_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import argparse
import os
import torch
import json
import random
from dataset import Dataset
from CAT.model.utils import StraightThrough
import numpy as np
import torch.nn as nn
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def initialize_seeds(seedNum):
np.random.seed(seedNum)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seedNum)
np.random.seed(seedNum)
random.seed(seedNum)
def open_json(path_):
with open(path_) as fh:
data = json.load(fh)
return data
def data_split(datapath, fold, seed):
data = open_json(datapath)
random.Random(seed).shuffle(data)
fields = ['q_ids', 'labels'] # 'ans', 'correct_ans',
del_fields = []
for f in data[0]:
if f not in fields:
del_fields.append(f)
for d in data:
for f in fields:
d[f] = np.array(d[f])
for f in del_fields:
if f not in fields:
del d[f]
N = len(data)//5
test_fold, valid_fold = fold-1, fold % 5
test_data = data[test_fold*N: (test_fold+1)*N]
valid_data = data[valid_fold*N: (valid_fold+1)*N]
train_indices = [idx for idx in range(len(data))]
train_indices = [idx for idx in train_indices if idx //
N != test_fold and idx//N != valid_fold]
train_data = [data[idx] for idx in train_indices]
return train_data, valid_data, test_data
class collate_fn(object):
def __init__(self, n_question):
self.n_question = n_question
def __call__(self, batch):
B = len(batch)
input_labels = torch.zeros(B, self.n_question).long()
output_labels = torch.zeros(B, self.n_question).long()
#input_ans = torch.ones(B, self.n_question).long()
input_mask = torch.zeros(B, self.n_question).long()
output_mask = torch.zeros(B, self.n_question).long()
for b_idx in range(B):
input_labels[b_idx, batch[b_idx]['input_question'].long(
)] = batch[b_idx]['input_label'].long()
#input_ans[b_idx, batch[b_idx]['input_question'].long()] = batch[b_idx]['input_ans'].long()
input_mask[b_idx, batch[b_idx]['input_question'].long()] = 1
output_labels[b_idx, batch[b_idx]['output_question'].long(
)] = batch[b_idx]['output_label'].long()
output_mask[b_idx, batch[b_idx]['output_question'].long()] = 1
output = {'input_labels': input_labels, 'input_mask': input_mask,
'output_labels': output_labels, 'output_mask': output_mask}
# 'input_ans':input_ans,
return output
def get_inputs(batch):
input_labels = batch['input_labels'].to(device).float()
input_mask = batch['input_mask'].to(device)
#input_ans = batch['input_ans'].to(device)-1
input_ans = None
return input_labels, input_ans, input_mask
def get_outputs(batch):
output_labels, output_mask = batch['output_labels'].to(
device).float(), batch['output_mask'].to(device) # B,948
return output_labels, output_mask
def compute_loss(output, labels, mask, reduction= True):
loss_function = nn.BCEWithLogitsLoss(reduction='none')
loss = loss_function(output, labels) * mask
if reduction:
return loss.sum()/mask.sum()
else:
return loss.sum()
def normalize_loss(output, labels, mask):
loss_function = nn.BCEWithLogitsLoss(reduction='none')
loss = loss_function(output, labels) * mask
count = mask.sum(dim =-1)+1e-8#N,1
loss = 10. * torch.sum(loss, dim =-1)/count
return loss.sum()
class MAMLModel(nn.Module):
def __init__(self, n_question,question_dim =1,dropout=0.2, sampling='active', n_query=10,emb = None,tp='irt'):
super().__init__()
self.n_query = n_query
self.sampling = sampling
self.sigmoid = nn.Sigmoid()
self.n_question = n_question
self.question_dim = question_dim
self.tp = tp
if tp == 'irt':
self.question_difficulty = nn.Parameter(torch.zeros(question_dim,n_question))
else:
self.prednet_input_len = emb.shape[1]
self.prednet_len1, self.prednet_len2 = 128, 64 # changeable
self.kn_emb = emb
#self.student_emb = nn.Embedding(self.emb_num, self.stu_dim)
self.k_difficulty = nn.Parameter(torch.zeros(n_question,self.prednet_input_len))
self.e_discrimination = nn.Parameter(torch.full((n_question,1), 0.5))
self.prednet_full1 = nn.Linear(self.prednet_input_len, self.prednet_len1)
self.drop_1 = nn.Dropout(p=0.5)
self.prednet_full2 = nn.Linear(self.prednet_len1, self.prednet_len2)
self.drop_2 = nn.Dropout(p=0.5)
self.prednet_full3 = nn.Linear(self.prednet_len2, 1)
def reset(self, batch):
input_labels, _, input_mask = get_inputs(batch)
obs_state = ((input_labels-0.5)*2.) # B, 948
train_mask = torch.zeros(
input_mask.shape[0], self.n_question).long().to(device)
env_states = {'obs_state': obs_state, 'train_mask': train_mask,
'action_mask': input_mask.clone()}
return env_states
def step(self, env_states):
obs_state, train_mask = env_states[
'obs_state'], env_states['train_mask']
state = obs_state*train_mask # B, 948
return state
def pick_sample(self,sampling, config):
student_embed = config['meta_param']
n_student = len(config['meta_param'])
action = self.pick_uncertain_sample(student_embed, config['available_mask'])
config['train_mask'][range(n_student), action], config['available_mask'][range(n_student), action] = 1, 0
return action
def forward(self, batch, config):
#get inputs
input_labels = batch['input_labels'].to(device).float()
student_embed = config['meta_param']#
output = self.compute_output(student_embed)
train_mask = config['train_mask']
#compute loss
if config['mode'] == 'train':
output_labels, output_mask = get_outputs(batch)
#meta model parameters
output_loss = compute_loss(output, output_labels, output_mask, reduction=False)/len(train_mask)
#for adapting meta model parameters
if self.n_query!=-1:
input_loss = compute_loss(output, input_labels, train_mask, reduction=False)
else:
input_loss = normalize_loss(output, input_labels, train_mask)
#loss = input_loss*self.alpha + output_loss
return {'loss': output_loss, 'train_loss': input_loss, 'output': self.sigmoid(output).detach().cpu().numpy()}
else:
input_loss = compute_loss(output, input_labels, train_mask,reduction=False)
return {'output': self.sigmoid(output).detach().cpu().numpy(), 'train_loss': input_loss}
def pick_uncertain_sample(self, student_embed, available_mask):
with torch.no_grad():
output = self.compute_output(student_embed)
output = self.sigmoid(output)
inf_mask = torch.clamp(
torch.log(available_mask.float()), min=torch.finfo(torch.float32).min)
scores = torch.min(1-output, output)+inf_mask
actions = torch.argmax(scores, dim=-1)
return actions
def compute_output(self, student_embed):
if self.tp=='irt':
# embedded_question_difficulty = self.question_difficulty.weight
# embedded_question_dq = self.question_dq.weight
# output = embedded_question_difficulty * (student_embed - embedded_question_dq)
output = (student_embed - self.question_difficulty)
#output = self.tmp*(student_embed - self.question_difficulty)
else:
#output = self.output_layer(self.layers(student_embed))
#stu_emb = torch.sigmoid(self.student_emb(stu_id))
k_difficulty = self.k_difficulty
e_discrimination = self.e_discrimination
kn_emb = self.kn_emb
#e_discrimination = torch.sigmoid(self.e_discrimination) * 10
# prednet
student_embed = student_embed.unsqueeze(1)
input_x = e_discrimination * (student_embed - k_difficulty) *kn_emb.to(device)
input_x = self.drop_1(torch.sigmoid(self.prednet_full1(input_x)))
input_x = self.drop_2(torch.sigmoid(self.prednet_full2(input_x)))
output = self.prednet_full3(input_x)
output = output.squeeze()
return output
def clone_meta_params(batch):
return [meta_params[0].expand(len(batch['input_labels']), -1).clone(
)]
def inner_algo(batch, config, new_params, create_graph=False):
for _ in range(params.inner_loop):
config['meta_param'] = new_params[0]
res = model(batch, config)
loss = res['train_loss']
grads = torch.autograd.grad(
loss, new_params, create_graph=create_graph)
new_params = [(new_params[i] - params.inner_lr*grads[i])
for i in range(len(new_params))]
del grads
config['meta_param'] = new_params[0]
return
def run_biased(batch, config):
new_params = clone_meta_params(batch)
if config['mode'] == 'train':
model.eval()
pick_biased_samples(batch, config)
optimizer.zero_grad()
meta_params_optimizer.zero_grad()
inner_algo(batch, config, new_params)
if config['mode'] == 'train':
model.train()
optimizer.zero_grad()
res = model(batch, config)
loss = res['loss']
loss.backward()
optimizer.step()
meta_params_optimizer.step()
####
else:
with torch.no_grad():
res = model(batch, config)
return res['output']
def pick_biased_samples(batch, config):
new_params = clone_meta_params(batch)
env_states = model.reset(batch)
action_mask, train_mask = env_states['action_mask'], env_states['train_mask']
for i in range(params.n_query):
with torch.no_grad():
state = model.step(env_states)
train_mask = env_states['train_mask']
if config['mode'] == 'train':
train_mask_sample, actions = st_policy.policy(state, action_mask)
else:
with torch.no_grad():
train_mask_sample, actions = st_policy.policy(
state, action_mask)
action_mask[range(len(action_mask)), actions] = 0
# env state train mask should be detached
env_states['train_mask'], env_states['action_mask'] = train_mask + \
train_mask_sample.data, action_mask
if config['mode'] == 'train':
# loss computation train mask should flow gradient
config['train_mask'] = train_mask_sample+train_mask
inner_algo(batch, config, new_params, create_graph=True)
res = model(batch, config)
loss = res['loss']
st_policy.update(loss)
config['train_mask'] = env_states['train_mask']
return
def create_parser():
parser = argparse.ArgumentParser(description='ML')
parser.add_argument('--model', type=str,
default='biirt-biased', help='type')
parser.add_argument('--name', type=str, default='demo', help='type')
parser.add_argument('--hidden_dim', type=int, default=1024, help='type')
parser.add_argument('--question_dim', type=int, default=4, help='type')
parser.add_argument('--lr', type=float, default=1e-4, help='type') #
parser.add_argument('--meta_lr', type=float, default=1e-4, help='type')
parser.add_argument('--inner_lr', type=float, default=1e-1, help='type') #
parser.add_argument('--inner_loop', type=int, default=5, help='type') #
parser.add_argument('--policy_lr', type=float, default=2e-3, help='type') #
parser.add_argument('--dropout', type=float, default=0.6, help='type')
parser.add_argument('--dataset', type=str,
default='exam', help='eedi-1 or eedi-3')
parser.add_argument('--fold', type=int, default=1, help='type')
parser.add_argument('--n_query', type=int, default=20, help='type')
parser.add_argument('--seed', type=int, default=221, help='type')
parser.add_argument('--use_cuda', action='store_true')
def train_model():
config['mode'] = 'train'
config['epoch'] = epoch
model.train()
for batch in train_loader:
# Select RL Actions, save in config
run_biased(batch, config)
#
if __name__ == "__main__":
params = create_parser()
print(params)
config = {
'policy_path': 'policy.pt',
}
initialize_seeds(params.seed)
#
base, sampling = params.model.split('-')[0], params.model.split('-')[-1]
if base == 'biirt':
model = MAMLModel(sampling=sampling, n_query=params.n_query,
n_question=params.n_question, question_dim=1,tp = 'irt').to(device)
meta_params = [torch.zeros(1, 1, device=device, requires_grad=True)]
# meta_params = [torch.Tensor(
# 1, 1).normal_(-1., 1.).to(device).requires_grad_()]
if base == 'binn':
concept_name = params.dataset +'_concept_map.json'
with open(concept_name, 'r') as file:
concepts = json.load(file)
num_concepts = params.concept_num
concepts_emb = [[0.] * num_concepts for i in range(params.n_question)]
if params.dataset=='exam':
for i in range(1,params.n_question):
for concept in concepts[str(i)]:
concepts_emb[i][concept] = 1.0
else:
for i in range(params.n_question):
for concept in concepts[str(i)]:
concepts_emb[i][concept] = 1.0
concepts_emb = torch.tensor(concepts_emb, dtype=torch.float32).to(device)
model = MAMLModel(sampling=sampling, n_query=params.n_query,
n_question=params.n_question, question_dim=params.question_dim,tp ='ncd',emb=concepts_emb).to(device)
meta_params = [torch.zeros((1, num_concepts), device=device, requires_grad=True)]
# meta_params = [torch.Tensor(
# 1,num_concepts).normal_(-1., 1.).to(device).requires_grad_()]
# meta_params = [torch.Tensor(
# 1, 1).normal_(-1., 1.).to(device).requires_grad_()]
optimizer = torch.optim.Adam(
model.parameters(), lr=params.lr, weight_decay=1e-8)
meta_params_optimizer = torch.optim.SGD(
meta_params, lr=params.meta_lr, weight_decay=2e-6, momentum=0.9)
# neptune_exp.log_text(
# 'model_summary', repr(model))
#
# neptune_exp.log_text(
# 'ppo_model_summary', repr(ppo_policy.policy))
betas = (0.9, 0.999)
st_policy = StraightThrough(params.n_question, params.n_question,
params.policy_lr, betas)
# neptune_exp.log_text(
# 'biased_model_summary', repr(st_policy.policy))
#
data_path = os.path.normpath('data/train_task_'+params.dataset+'.json')
train_data, valid_data, test_data = data_split(
data_path, params.fold, params.seed)
train_dataset, valid_dataset, test_dataset = Dataset(
train_data), Dataset(valid_data), Dataset(test_data)
#
num_workers = 3
collate_fn = collate_fn(params.n_question)
train_loader = torch.utils.data.DataLoader(
train_dataset, collate_fn=collate_fn, batch_size=params.train_batch_size, num_workers=num_workers, shuffle=True, drop_last=True)
for epoch in range(params.n_epoch):
train_model()
torch.save(st_policy.policy.state_dict(),config['policy_path'])