-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
348 lines (308 loc) · 15.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import os
import json
import random
import time
import pickle
from pathlib import Path
import wandb
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import util.misc as utils
from engine import evaluate, train_one_epoch
from models import build_model
from datasets.fewshotLoader import roibatchLoader
from pytorchgo.utils import logger
from pytorchgo.utils.pytorch_utils import model_summary, optimizer_summary
from tqdm import tqdm
import pytorchgo_args
import scipy.io
import h5py
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--shot', default=0, type=int)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--num_classes', default=1, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--net', dest='net', default='I3D', type=str, choices=['I3D', 'c3d', 'resnet18', 'resnet34'],
help='backbone')
parser.add_argument('--crop_size', dest='crop_size', default=320, type=int,
help='crop size of frames')
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=1, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=1, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--sup_layers', default=1, type=int,
help="Number of support encoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=216, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=6, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# action dataset parameters
parser.add_argument('--dataset', dest='dataset', default='ava', type=str, choices=['ava', 'ucf101-24'],
help='training dataset')
parser.add_argument('--len_train', default=10000, type=int, help="for debug, None: original len")
parser.add_argument('--len_val', default=500, type=int, help="reducing validation time")
parser.add_argument('--len_test', default=None, type=int)
# run name
parser.add_argument('--run_name', dest='run_name', type=str,
help='name of this run')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--wandb', type=bool, default=True)
parser.add_argument('--num_workers', default=2, type=int)
parser.add_argument("--logger_option", default=None, type=str)
parser.add_argument('--schedulelr', default='cosine', type=str,choices=['cosine','steplr'])
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def get_roidb(path):
data = pickle.load(open(path, 'rb'))
return data
def get_roidb_json(path):
with open(path, 'r') as f:
data = json.load(f)
return data
def main(args):
utils.init_distributed_mode(args)
logger.info("git:\n {}\n".format(utils.get_sha()))
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
logger.info(args)
import getpass
customized_name = 'train_log/v0_{user}_d{debug}_i3d_bs{bs}shot{shot}epoch{epoch}{schedulelr}lr{lr}lrb{lrb}seed{sd}_enc{enc}sup{sup}dec{dec}head{nheads}q{num}'.\
format(bs=args.batch_size,
debug=int(args.debug),
enc=args.enc_layers,
dec=args.dec_layers,
sup=args.sup_layers,
sd=args.seed,
lr=args.lr,
shot=args.shot,
schedulelr=args.schedulelr,
epoch=args.epochs,
nheads=args.nheads,
num=args.num_queries,
user=getpass.getuser(),
lrb=args.lr_backbone)
# wandb
args.run_name = customized_name.replace("train_log/", "")
if args.wandb:
import wandb
os.system('wandb login c3be77ba0cba371a692db3aacb4f5ceec8e73440')
wandb.init(config=args, name=args.run_name, project="few-shot-detr")
wandb.config.update(dict(name=args.run_name))
logger.set_logger_dir(customized_name, args.logger_option)
pytorchgo_args.set_args(args)
if args.debug:
logger.warning("debug mode!!!!")
args.len_train = 60
args.len_val = 60
args.len_test = 60
args.epochs = 3
args.batch_size = 10
else:
pass
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# action dataset
if args.dataset == "ava":
args.imdb_name = 'ava_train.pkl'
args.imdb_val_name = 'ava_val.json'
args.imdb_test_name = 'ava_test.json'
else:
raise
roidb_path = os.path.join("./datasets/", 'ava_val.json')
roidb = get_roidb_json(roidb_path)
print(len(roidb))
# roidb_path = os.path.join("./datasets/", 'finalAnnots.mat')
roidb_path = os.path.join("./datasets/", '00025.mat')
roidb = h5py.File(roidb_path)
arrays = {}
for k, v in roidb.items():
arrays[k] = np.array(v)
roidb = scipy.io.loadmat(roidb_path)
roidb_path = os.path.join("./datasets/", 'ucf.pkl')
roidb = get_roidb(roidb_path)
for k in roidb.keys():
if len(roidb[k]['annotations'])>1:
t = 0
roidb_path = os.path.join("./datasets/", args.imdb_name)
roidb = get_roidb(roidb_path)
# only flipped false
dataset = roibatchLoader(roidb, crop_size=args.crop_size, len_dataset=args.len_train,
shot=args.shot)
roidb_val_path = "./datasets/" + args.imdb_val_name
roidb_val = get_roidb_json(roidb_val_path)
roidb_test_path = "./datasets/" + args.imdb_test_name
roidb_test = get_roidb_json(roidb_test_path)
dataset_val = roibatchLoader(roidb_test, crop_size=args.crop_size, len_dataset=args.len_val, phase='test',
shot=args.shot)
dataset_test = roibatchLoader(roidb_test, crop_size=args.crop_size, len_dataset=args.len_test, phase='test',
shot=args.shot)
if args.distributed:
sampler_train = DistributedSampler(dataset)
# sampler_train_4eval = DistributedSampler(dataset_4eval)
# sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
sampler_test = DistributedSampler(dataset_test, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset)
# sampler_train_4eval = torch.utils.data.RandomSampler(dataset_4eval)
# sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
# data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
# collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_train = DataLoader(dataset, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
# data_loader_train_4eval = DataLoader(dataset_4eval, sampler=sampler_val, drop_last=False,
# collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_test = DataLoader(dataset_test, args.batch_size, sampler=sampler_test,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
model, criterion, postprocessors = build_model(args)
device = torch.device(args.device)
model.to(device)
logger.info(model)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info('number of params:', n_parameters)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
if args.schedulelr == 'steplr':
lr_drop = args.epochs*2//3
logger.warning("lr_drop={}".format(lr_drop))
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_drop, gamma=0.1, last_epoch=-1)
elif args.schedulelr == 'cosine':
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min=0, last_epoch=-1)
else:raise
optimizer_summary(optimizer)
model_summary(model)
start_time = time.time()
current_time = time.time()
if args.eval:
logger.info("Start evaluating")
checkpoint = torch.load(os.path.join(logger.get_logger_dir(), 'shit.pth'), map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
result = evaluate(model, criterion, data_loader_test, device)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Final result {}'.format(result))
logger.info('Evaluating time {}'.format(total_time_str))
return
logger.info("Start training")
best_result = 0
for epoch in tqdm(range(args.start_epoch, args.epochs), desc="training"):
if args.distributed:
sampler_train.set_epoch(epoch)
train_one_epoch(model, criterion, data_loader_train, optimizer, device, epoch, lr_scheduler,
args.batch_size, args.clip_max_norm)
#lr_scheduler.step()
epoch_time = time.time() - current_time
current_time = time.time()
logger.info('Epoch:{} epoch time:{} '.format(epoch, datetime.timedelta(seconds=int(epoch_time))))
logger.info("Validation ...")
result = evaluate(model, criterion, data_loader_test, device)
# if True:
# logger.warning("evaluation on train data..")
# train_result = evaluate(model, criterion, data_loader_train_4eval, device)
# wandb.log(dict(train_acc=train_result))
eval_time = time.time() - current_time
current_time = time.time()
if result >= best_result:
best_result = result
torch.save({
'model': model_without_ddp.state_dict(),
}, os.path.join(logger.get_logger_dir(), 'shit.pth'))
logger.info('best result! shit saved!')
logger.info('Validation time:{} best_result:{} result:{}'.format(datetime.timedelta(seconds=int(eval_time)),
best_result, result))
wandb.log(
dict(eval_acc=result, best_acc=best_result))
current_time = time.time()
total_time = current_time - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Total training time {}'.format(total_time_str))
logger.info("Testing ...")
checkpoint = torch.load(os.path.join(logger.get_logger_dir(), 'shit.pth'), map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
result = evaluate(model, criterion, data_loader_test, device)
wandb.run.summary["final_test_accuracy"] = result
test_time = time.time() - current_time
logger.warning('Congrats! Testing time:{} final result:{}'.format(datetime.timedelta(seconds=int(test_time)), result))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)