-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_ava_performance.py
212 lines (179 loc) · 7.03 KB
/
get_ava_performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
r"""Compute action detection performance for the AVA dataset.
Please send any questions about this code to the Google Group ava-dataset-users:
https://groups.google.com/forum/#!forum/ava-dataset-users
Example usage:
python -O get_ava_performance.py \
-l ava/ava_action_list_v2.1_for_activitynet_2018.pbtxt.txt \
-g ava_val_v2.1.csv \
-d your_results.csv
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from collections import defaultdict
import csv
import decimal
import heapq
import logging
import pprint
import sys
import time
import numpy as np
from ava import object_detection_evaluation
from ava import standard_fields
def print_time(message, start):
logging.info("==> %g seconds to %s", time.time() - start, message)
def make_image_key(video_id, timestamp):
"""Returns a unique identifier for a video id & timestamp."""
return "%s,%.6f" % (video_id, decimal.Decimal(timestamp))
def read_csv(csv_file, class_whitelist=None, capacity=0):
"""Loads boxes and class labels from a CSV file in the AVA format.
CSV file format described at https://research.google.com/ava/download.html.
Args:
csv_file: A file object.
class_whitelist: If provided, boxes corresponding to (integer) class labels
not in this set are skipped.
capacity: Maximum number of labeled boxes allowed for each example. Default
is 0 where there is no limit.
Returns:
boxes: A dictionary mapping each unique image key (string) to a list of
boxes, given as coordinates [y1, x1, y2, x2].
labels: A dictionary mapping each unique image key (string) to a list of
integer class lables, matching the corresponding box in `boxes`.
scores: A dictionary mapping each unique image key (string) to a list of
score values lables, matching the corresponding label in `labels`. If
scores are not provided in the csv, then they will default to 1.0.
all_keys: A set of all image keys found in the csv file.
"""
entries = defaultdict(list)
boxes = defaultdict(list)
labels = defaultdict(list)
scores = defaultdict(list)
all_keys = set()
reader = csv_file
for row in reader:
assert len(row) in [2, 7, 8], "Wrong number of columns: " + row
image_key = make_image_key(row[0], row[1])
all_keys.add(image_key)
# Rows with 2 tokens (videoid,timestatmp) indicates images with no detected
# / ground truth actions boxes. Add them to all_keys, so we can score
# appropriately, but otherwise skip the box creation steps.
if len(row) == 2:
continue
x1, y1, x2, y2 = [float(n) for n in row[2:6]]
action_id = int(row[6])
if class_whitelist and action_id not in class_whitelist:
continue
score = 1.0
if len(row) == 8:
score = float(row[7])
if capacity < 1 or len(entries[image_key]) < capacity:
heapq.heappush(entries[image_key], (score, action_id, y1, x1, y2, x2))
elif score > entries[image_key][0][0]:
heapq.heapreplace(entries[image_key], (score, action_id, y1, x1, y2, x2))
for image_key in entries:
# Evaluation API assumes boxes with descending scores
entry = sorted(entries[image_key], key=lambda tup: -tup[0])
for item in entry:
score, action_id, y1, x1, y2, x2 = item
boxes[image_key].append([y1, x1, y2, x2])
labels[image_key].append(action_id)
scores[image_key].append(score)
return boxes, labels, scores, all_keys
def read_labelmap(labelmap_file):
"""Reads a labelmap without the dependency on protocol buffers.
Args:
labelmap_file: A file object containing a label map protocol buffer.
Returns:
labelmap: The label map in the form used by the object_detection_evaluation
module - a list of {"id": integer, "name": classname } dicts.
class_ids: A set containing all of the valid class id integers.
"""
labelmap = []
class_ids = set()
name = ""
class_id = ""
for line in labelmap_file:
if line.startswith(" name:"):
name = line.split('"')[1]
elif line.startswith(" id:") or line.startswith(" label_id:"):
class_id = int(line.strip().split(" ")[-1])
labelmap.append({"id": class_id, "name": name})
class_ids.add(class_id)
return labelmap, class_ids
def run_evaluation(groundtruth, detections):
"""Runs evaluations given input files.
Args:
labelmap: file object containing map of labels to consider, in pbtxt format
groundtruth: file object
detections: file object
"""
categories = [{'id': 1, 'name': 'foreground'}]
class_whitelist = {1}
logging.info("CATEGORIES (%d):\n%s", len(categories),
pprint.pformat(categories, indent=2))
pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator(
categories)
# Reads the ground truth data.
boxes, labels, _, included_keys = read_csv(groundtruth, class_whitelist, 0)
for image_key in boxes:
pascal_evaluator.add_single_ground_truth_image_info(
image_key, {
standard_fields.InputDataFields.groundtruth_boxes:
np.array(boxes[image_key], dtype=float),
standard_fields.InputDataFields.groundtruth_classes:
np.array(labels[image_key], dtype=int),
standard_fields.InputDataFields.groundtruth_difficult:
np.zeros(len(boxes[image_key]), dtype=bool)
})
# Reads detections data.
boxes, labels, scores, _ = read_csv(detections, class_whitelist, 50)
for image_key in boxes:
if image_key not in included_keys:
logging.info(("Found detections for image %s which is not part of the "
"the ground truth. They will be ignored."), image_key)
continue
pascal_evaluator.add_single_detected_image_info(
image_key, {
standard_fields.DetectionResultFields.detection_boxes:
np.array(boxes[image_key], dtype=float),
standard_fields.DetectionResultFields.detection_classes:
np.array(labels[image_key], dtype=int),
standard_fields.DetectionResultFields.detection_scores:
np.array(scores[image_key], dtype=float)
})
result = pascal_evaluator.evaluate()
return result
def parse_arguments():
"""Parses command-line flags.
Returns:
args: a named tuple containing three file objects args.labelmap,
args.groundtruth, and args.detections.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"-l",
"--labelmap",
help="Filename of label map",
type=argparse.FileType("r"),
default="ava/ava_action_list_v2.1_for_activitynet_2018.pbtxt.txt")
parser.add_argument(
"-g",
"--groundtruth",
help="CSV file containing ground truth.",
type=argparse.FileType("r"),
required=True)
parser.add_argument(
"-d",
"--detections",
help="CSV file containing inferred action detections.",
type=argparse.FileType("r"),
required=True)
return parser.parse_args()
def main():
logging.basicConfig(level=logging.INFO)
args = parse_arguments()
run_evaluation(**vars(args))
if __name__ == "__main__":
main()