-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_link_classification.py
546 lines (463 loc) · 37.9 KB
/
train_link_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import logging
import time
import sys
import os
from tqdm import tqdm
import numpy as np
import warnings
import shutil
import json
import torch
import torch.nn as nn
from models.TGAT import TGAT
from models.DyGKT import DyGKT
from models.MemoryModel import MemoryModel, compute_src_dst_node_time_shifts
from models.simpleKT import SimpleKT
from models.DyGFormer import DyGFormer
from models.CTNCM import CTNCM
from models.DKT import DKT
from models.DIMKT import DIMKT
from models.QIKT import QIKT
from models.IPKT import IPKT
from models.IEKT import IEKT
from models.AKT import AKT
from models.modules import MergeLayer, MLPClassifier
from utils.utils import set_random_seed, convert_to_gpu, get_parameter_sizes, create_optimizer
from utils.utils import get_neighbor_sampler, NegativeEdgeSampler
from evaluate_models_utils import evaluate_model_link_classification
from utils.metrics import get_link_classification_metrics
from utils.DataLoader import get_idx_data_loader, get_link_classification_data
from utils.EarlyStopping import EarlyStopping
from utils.load_configs import get_link_classification_args
if __name__ == "__main__":
warnings.filterwarnings('ignore')
# get arguments
args = get_link_classification_args(is_evaluation=False)
# get data for training, validation and testing
node_raw_features, edge_raw_features, full_data, train_data, val_data, test_data, new_node_val_data, new_node_test_data = \
get_link_classification_data(dataset_name=args.dataset_name, val_ratio=args.val_ratio, test_ratio=args.test_ratio)
# print(node_raw_features)
# initialize training neighbor sampler to retrieve temporal graph
train_neighbor_sampler = get_neighbor_sampler(data=train_data, sample_neighbor_strategy=args.sample_neighbor_strategy,
time_scaling_factor=args.time_scaling_factor, seed=0)
# initialize validation and test neighbor sampler to retrieve temporal graph
full_neighbor_sampler = get_neighbor_sampler(data=full_data, sample_neighbor_strategy=args.sample_neighbor_strategy,
time_scaling_factor=args.time_scaling_factor, seed=1)
# initialize negative samplers, set seeds for validation and testing so negatives are the same across different runs
# in the inductive setting, negatives are sampled only amongst other new nodes
# train negative edge sampler does not need to specify the seed, but evaluation samplers need to do so
train_neg_edge_sampler = NegativeEdgeSampler(src_node_ids=train_data.src_node_ids, dst_node_ids=train_data.dst_node_ids)
val_neg_edge_sampler = NegativeEdgeSampler(src_node_ids=full_data.src_node_ids, dst_node_ids=full_data.dst_node_ids, seed=0)
new_node_val_neg_edge_sampler = NegativeEdgeSampler(src_node_ids=new_node_val_data.src_node_ids, dst_node_ids=new_node_val_data.dst_node_ids, seed=1)
test_neg_edge_sampler = NegativeEdgeSampler(src_node_ids=full_data.src_node_ids, dst_node_ids=full_data.dst_node_ids, seed=2)
new_node_test_neg_edge_sampler = NegativeEdgeSampler(src_node_ids=new_node_test_data.src_node_ids, dst_node_ids=new_node_test_data.dst_node_ids, seed=3)
# get data loaders
train_idx_data_loader = get_idx_data_loader(indices_list=list(range(len(train_data.src_node_ids))), batch_size=args.batch_size, shuffle=False)
val_idx_data_loader = get_idx_data_loader(indices_list=list(range(len(val_data.src_node_ids))), batch_size=args.batch_size, shuffle=False)
new_node_val_idx_data_loader = get_idx_data_loader(indices_list=list(range(len(new_node_val_data.src_node_ids))), batch_size=args.batch_size, shuffle=False)
test_idx_data_loader = get_idx_data_loader(indices_list=list(range(len(test_data.src_node_ids))), batch_size=args.batch_size, shuffle=False)
new_node_test_idx_data_loader = get_idx_data_loader(indices_list=list(range(len(new_node_test_data.src_node_ids))), batch_size=args.batch_size, shuffle=False)
val_metric_all_runs, new_node_val_metric_all_runs, test_metric_all_runs, new_node_test_metric_all_runs = [], [], [], []
for run in range(args.num_runs):
set_random_seed(seed=run)
args.seed = run
args.save_model_name = f'{args.model_name}_seed{args.seed}'
# set up logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
os.makedirs(f"./logs/{args.model_name}/{args.dataset_name}/{args.save_model_name}/", exist_ok=True)
inf = 'paper'
fh = logging.FileHandler(f"./logs/{args.model_name}/{args.dataset_name}/{args.save_model_name}/{inf+str(time.time())}.log")
fh.setLevel(logging.DEBUG)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.WARNING)
# create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# add the handlers to logger
logger.addHandler(fh)
logger.addHandler(ch)
run_start_time = time.time()
start_time = time.time()
initial_memory = torch.cuda.memory_allocated()
logger.info(f"********** Run {run + 1} starts. **********")
logger.info(f'configuration is {args}')
# create model
if args.model_name == 'DKT':
dynamic_backbone = DKT(node_raw_features=node_raw_features,
edge_raw_features=edge_raw_features,
dropout=args.dropout,
num_neighbors=args.num_neighbors,
device=args.device)
elif args.model_name == 'DyGKT':
dynamic_backbone = DyGKT(node_raw_features=node_raw_features,
edge_raw_features=edge_raw_features,
dropout=args.dropout,
num_neighbors=args.num_neighbors,
device=args.device,
ablation=args.ablation)
elif args.model_name == 'CTNCM':
dynamic_backbone = CTNCM(node_raw_features=node_raw_features,
edge_raw_features=edge_raw_features,
dropout=args.dropout,
num_neighbors=args.num_neighbors,
device=args.device)
elif args.model_name == 'AKT':
dynamic_backbone = AKT(node_raw_features=node_raw_features,
edge_raw_features=edge_raw_features,
dropout=args.dropout,
num_neighbors=args.num_neighbors,
device=args.device)
elif args.model_name == 'DIMKT':
dynamic_backbone = DIMKT(node_raw_features=node_raw_features,
edge_raw_features=edge_raw_features,
dropout=args.dropout,
dataset_name=args.dataset_name,
device=args.device)
elif args.model_name == 'IPKT':
dynamic_backbone = IPKT(node_raw_features=node_raw_features,
edge_raw_features=edge_raw_features,
dropout=args.dropout,
device=args.device)
elif args.model_name == 'IEKT':
dynamic_backbone = IEKT(node_raw_features=node_raw_features,
edge_raw_features=edge_raw_features,
dropout=args.dropout,
device=args.device)
elif args.model_name == 'QIKT':
dynamic_backbone = QIKT(node_raw_features=node_raw_features,
edge_raw_features=edge_raw_features,
dropout=args.dropout,
device=args.device)
elif args.model_name == 'simpleKT':
dynamic_backbone = SimpleKT(node_raw_features=node_raw_features,
edge_raw_features=edge_raw_features,
dropout=args.dropout,
num_neighbors=args.num_neighbors,
device=args.device)
elif args.model_name == 'TGAT':
dynamic_backbone = TGAT(node_raw_features=node_raw_features, edge_raw_features=edge_raw_features, neighbor_sampler=train_neighbor_sampler,
time_feat_dim=args.time_feat_dim, num_layers=args.num_layers, num_heads=args.num_heads, dropout=args.dropout, device=args.device)
elif args.model_name in ['TGN']:
# four floats that represent the mean and standard deviation of source and destination node time shifts in the training data, which is used for JODIE
src_node_mean_time_shift, src_node_std_time_shift, dst_node_mean_time_shift_dst, dst_node_std_time_shift = \
compute_src_dst_node_time_shifts(train_data.src_node_ids, train_data.dst_node_ids, train_data.node_interact_times)
dynamic_backbone = MemoryModel(node_raw_features=node_raw_features, edge_raw_features=edge_raw_features, neighbor_sampler=train_neighbor_sampler,
time_feat_dim=args.time_feat_dim, model_name=args.model_name, num_layers=args.num_layers, num_heads=args.num_heads,
dropout=args.dropout, src_node_mean_time_shift=src_node_mean_time_shift, src_node_std_time_shift=src_node_std_time_shift,
dst_node_mean_time_shift_dst=dst_node_mean_time_shift_dst, dst_node_std_time_shift=dst_node_std_time_shift, device=args.device)
elif args.model_name == 'DyGFormer':
dynamic_backbone = DyGFormer(node_raw_features=node_raw_features, edge_raw_features=edge_raw_features, neighbor_sampler=train_neighbor_sampler,
time_feat_dim=args.time_feat_dim, channel_embedding_dim=args.channel_embedding_dim, patch_size=args.patch_size,
num_layers=args.num_layers, num_heads=args.num_heads, dropout=args.dropout,
max_input_sequence_length=args.max_input_sequence_length, device=args.device)
else:
raise ValueError(f"Wrong value for model_name {args.model_name}!")
if args.model_name == 'DyGKT':
link_predictor = MergeLayer(input_dim1=64, input_dim2=64,hidden_dim=64,output_dim=1)
else:
link_predictor = MergeLayer(node_raw_features.shape[1],input_dim2=node_raw_features.shape[1], hidden_dim=node_raw_features.shape[1], output_dim=1)#input_dim1=64, input_dim2=64,hidden_dim=64,output_dim=1)#node_raw_features.shape[1],input_dim2=node_raw_features.shape[1], hidden_dim=node_raw_features.shape[1], output_dim=1)
# MLPClassifier(node_dim, dropout=args.dropout)
model = nn.Sequential(dynamic_backbone, link_predictor)
logger.info(f'model -> {model}')
logger.info(f'model name: {args.model_name}, #parameters: {get_parameter_sizes(model) * 4} B, '
f'{get_parameter_sizes(model) * 4 / 1024} KB, {get_parameter_sizes(model) * 4 / 1024 / 1024} MB.')
optimizer = create_optimizer(model=model, optimizer_name=args.optimizer, learning_rate=args.learning_rate, weight_decay=args.weight_decay)
model = convert_to_gpu(model, device=args.device)
save_model_folder = f"./saved_models/{args.model_name}/{args.dataset_name}/{args.save_model_name}/"
shutil.rmtree(save_model_folder, ignore_errors=True)
os.makedirs(save_model_folder, exist_ok=True)
early_stopping = EarlyStopping(patience=args.patience, save_model_folder=save_model_folder,
save_model_name=args.save_model_name, logger=logger, model_name=args.model_name)
loss_func = nn.BCELoss()
torch.autograd.set_detect_anomaly(True)
final_memory = None
for epoch in range(args.num_epochs):
if args.test and epoch > 0:
end_time = time.time()
memory_used = final_memory - initial_memory
logger.info(f'USE_TIME: {end_time-start_time}')
logger.info(f"USE_GPU: {memory_used / (1024**2):.3f} MB")
logger.info(f'MODEL_PARA:{get_parameter_sizes(model) * 4 / 1024 / 1024:.3f} MB')
print(args.model_name)
sys.exit()
model.train()
if args.model_name in ['DyGKT','QIKT','IEKT','IPKT','DIMKT', 'TGAT', 'TGN', 'DyGFormer','DKT','AKT','CTNCM','simpleKT']:
# training, only use training graph
model[0].set_neighbor_sampler(train_neighbor_sampler)
if args.model_name in ['TGN']:
# reinitialize memory of memory-based models at the start of each epoch
model[0].memory_bank.__init_memory_bank__()
model[0].last_node_id = None
# store train losses and metrics
train_losses, train_metrics = [], []
train_predicts, train_labels = [], []
train_idx_data_loader_tqdm = tqdm(train_idx_data_loader, ncols=120)
for batch_idx, train_data_indices in enumerate(train_idx_data_loader_tqdm):
train_data_indices = train_data_indices.numpy()
batch_src_node_ids, batch_dst_node_ids, batch_node_interact_times, batch_edge_ids, batch_edge_labels= \
train_data.src_node_ids[train_data_indices], train_data.dst_node_ids[train_data_indices], \
train_data.node_interact_times[train_data_indices], train_data.edge_ids[train_data_indices],\
train_data.labels[train_data_indices]
if args.model_name in ['DyGKT','DKT','AKT','CTNCM','simpleKT']:
batch_src_node_embeddings,batch_dst_node_embeddings = \
model[0].compute_src_dst_node_temporal_embeddings(src_node_ids=batch_src_node_ids,
edge_ids = batch_edge_ids,
node_interact_times=batch_node_interact_times,
dst_node_ids=batch_dst_node_ids)
elif args.model_name in ['QIKT','IEKT','IPKT','DIMKT']:
batch_src_node_embeddings,batch_dst_node_embeddings = \
model[0].compute_src_dst_node_temporal_embeddings(src_node_ids=batch_src_node_ids,
dst_node_ids=batch_dst_node_ids,
node_interact_times=batch_node_interact_times,
edge_ids=batch_edge_ids)
elif args.model_name in ['TGAT']:
# get temporal embedding of source and destination nodes
# two Tensors, with shape (batch_size, node_feat_dim)
batch_src_node_embeddings, batch_dst_node_embeddings = \
model[0].compute_src_dst_node_temporal_embeddings(src_node_ids=batch_src_node_ids,
dst_node_ids=batch_dst_node_ids,
node_interact_times=batch_node_interact_times,
num_neighbors=args.num_neighbors)
elif args.model_name in ['TGN']:
# note that negative nodes do not change the memories while the positive nodes change the memories,
# we need to first compute the embeddings of negative nodes for memory-based models
# get temporal embedding of negative source and negative destination nodes
# two Tensors, with shape (batch_size, node_feat_dim)
batch_src_node_embeddings, batch_dst_node_embeddings = \
model[0].compute_src_dst_node_temporal_embeddings(src_node_ids=batch_src_node_ids,
dst_node_ids=batch_dst_node_ids,
node_interact_times=batch_node_interact_times,
edge_ids=batch_edge_ids,
edges_are_positive=True,
num_neighbors=args.num_neighbors)
elif args.model_name in ['DyGFormer']:
# get temporal embedding of source and destination nodes
# two Tensors, with shape (batch_size, node_feat_dim)
batch_src_node_embeddings, batch_dst_node_embeddings = \
model[0].compute_src_dst_node_temporal_embeddings(src_node_ids=batch_src_node_ids,
dst_node_ids=batch_dst_node_ids,
node_interact_times=batch_node_interact_times)
else:
raise ValueError(f"Wrong value for model_name {args.model_name}!")
predicts = model[1](batch_src_node_embeddings,batch_dst_node_embeddings).squeeze(dim=-1).sigmoid()
labels = torch.tensor(batch_edge_labels, dtype=torch.float32,device=args.device)
loss = loss_func(input=predicts, target=labels)
final_memory = torch.cuda.memory_allocated()
train_losses.append(loss.item())
train_predicts.append(predicts)
train_labels.append(labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_idx_data_loader_tqdm.set_description(f'Epoch: {epoch + 1}, train for the {batch_idx + 1}-th batch, train loss: {loss.item()}')
if args.model_name in ['TGN']:
# detach the memories and raw messages of nodes in the memory bank after each batch, so we don't back propagate to the start of time
model[0].memory_bank.detach_memory_bank()
if args.model_name in ['TGN']:
# backup memory bank after training so it can be used for new validation nodes
train_backup_memory_bank = model[0].memory_bank.backup_memory_bank()
val_losses, val_metrics = evaluate_model_link_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=val_idx_data_loader,
evaluate_neg_edge_sampler=val_neg_edge_sampler,
evaluate_data=val_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
if args.model_name in ['TGN']:
# backup memory bank after validating so it can be used for testing nodes (since test edges are strictly later in time than validation edges)
val_backup_memory_bank = model[0].memory_bank.backup_memory_bank()
# reload training memory bank for new validation nodes
model[0].memory_bank.reload_memory_bank(train_backup_memory_bank)
new_node_val_losses, new_node_val_metrics = evaluate_model_link_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=new_node_val_idx_data_loader,
evaluate_neg_edge_sampler=new_node_val_neg_edge_sampler,
evaluate_data=new_node_val_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
if args.model_name in ['TGN']:
# reload validation memory bank for testing nodes or saving models
# note that since model treats memory as parameters, we need to reload the memory to val_backup_memory_bank for saving models
model[0].memory_bank.reload_memory_bank(val_backup_memory_bank)
train_predict = torch.cat(train_predicts, dim=0)
train_label = torch.cat(train_labels, dim=0)
# standard_label = torch.tensor([0, 1], dtype=torch.float32, device=args.device)
# predicts,labels = torch.concat((predicts,standard_label)),torch.concat((labels,standard_label))
train_metrics.append(get_link_classification_metrics(predicts=train_predict, labels=train_label))
logger.info(f'Epoch: {epoch + 1}, learning rate: {optimizer.param_groups[0]["lr"]}, train loss: {np.mean(train_losses):.4f}')
for metric_name in train_metrics[0].keys():
logger.info(f'train {metric_name}, {np.mean([train_metric[metric_name] for train_metric in train_metrics]):.4f}')
logger.info(f'validate loss: {np.mean(val_losses):.4f}')
for metric_name in val_metrics[0].keys():
logger.info(f'validate {metric_name}, {np.mean([val_metric[metric_name] for val_metric in val_metrics]):.4f}')
logger.info(f'new node validate loss: {np.mean(new_node_val_losses):.4f}')
for metric_name in new_node_val_metrics[0].keys():
logger.info(f'new node validate {metric_name}, {np.mean([new_node_val_metric[metric_name] for new_node_val_metric in new_node_val_metrics]):.4f}')
if (epoch + 1) % args.test_interval_epochs == 0:
test_losses, test_metrics = evaluate_model_link_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=test_idx_data_loader,
evaluate_neg_edge_sampler=test_neg_edge_sampler,
evaluate_data=test_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
if args.model_name in ['TGN']:
# reload validation memory bank for new testing nodes
model[0].memory_bank.reload_memory_bank(val_backup_memory_bank)
new_node_test_losses, new_node_test_metrics = evaluate_model_link_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=new_node_test_idx_data_loader,
evaluate_neg_edge_sampler=new_node_test_neg_edge_sampler,
evaluate_data=new_node_test_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
if args.model_name in ['TGN']:
# reload validation memory bank for testing nodes or saving models
# note that since model treats memory as parameters, we need to reload the memory to val_backup_memory_bank for saving models
model[0].memory_bank.reload_memory_bank(val_backup_memory_bank)
logger.info(f'test loss: {np.mean(test_losses):.4f}')
for metric_name in test_metrics[0].keys():
logger.info(f'test {metric_name}, {np.mean([test_metric[metric_name] for test_metric in test_metrics]):.4f}')
logger.info(f'new node test loss: {np.mean(new_node_test_losses):.4f}')
for metric_name in new_node_test_metrics[0].keys():
logger.info(f'new node test {metric_name}, {np.mean([new_node_test_metric[metric_name] for new_node_test_metric in new_node_test_metrics]):.4f}')
# select the best model based on all the validate metrics
val_metric_indicator = []
for metric_name in val_metrics[0].keys():
val_metric_indicator.append((metric_name, np.mean([val_metric[metric_name] for val_metric in val_metrics]), True))
early_stop = early_stopping.step(val_metric_indicator, model)
if early_stop:
break
# load the best model
early_stopping.load_checkpoint(model)
# evaluate the best model
logger.info(f'get final performance on dataset {args.dataset_name}...')
# the saved best model of memory-based models cannot perform validation since the stored memory has been updated by validation data
if args.model_name not in ['TGN']:
val_losses, val_metrics = evaluate_model_link_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=val_idx_data_loader,
evaluate_neg_edge_sampler=val_neg_edge_sampler,
evaluate_data=val_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
new_node_val_losses, new_node_val_metrics = evaluate_model_link_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=new_node_val_idx_data_loader,
evaluate_neg_edge_sampler=new_node_val_neg_edge_sampler,
evaluate_data=new_node_val_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
if args.model_name in ['TGN']:
# the memory in the best model has seen the validation edges, we need to backup the memory for new testing nodes
val_backup_memory_bank = model[0].memory_bank.backup_memory_bank()
test_losses, test_metrics = evaluate_model_link_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=test_idx_data_loader,
evaluate_neg_edge_sampler=test_neg_edge_sampler,
evaluate_data=test_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
if args.model_name in ['TGN']:
# reload validation memory bank for new testing nodes
model[0].memory_bank.reload_memory_bank(val_backup_memory_bank)
new_node_test_losses, new_node_test_metrics = evaluate_model_link_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=new_node_test_idx_data_loader,
evaluate_neg_edge_sampler=new_node_test_neg_edge_sampler,
evaluate_data=new_node_test_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
# store the evaluation metrics at the current run
val_metric_dict, new_node_val_metric_dict, test_metric_dict, new_node_test_metric_dict = {}, {}, {}, {}
if args.model_name not in ['TGN']:
logger.info(f'validate loss: {np.mean(val_losses):.4f}')
for metric_name in val_metrics[0].keys():
average_val_metric = np.mean([val_metric[metric_name] for val_metric in val_metrics])
logger.info(f'validate {metric_name}, {average_val_metric:.4f}')
val_metric_dict[metric_name] = average_val_metric
logger.info(f'new node validate loss: {np.mean(new_node_val_losses):.4f}')
for metric_name in new_node_val_metrics[0].keys():
average_new_node_val_metric = np.mean([new_node_val_metric[metric_name] for new_node_val_metric in new_node_val_metrics])
logger.info(f'new node validate {metric_name}, {average_new_node_val_metric:.4f}')
new_node_val_metric_dict[metric_name] = average_new_node_val_metric
logger.info(f'test loss: {np.mean(test_losses):.4f}')
for metric_name in test_metrics[0].keys():
average_test_metric = np.mean([test_metric[metric_name] for test_metric in test_metrics])
logger.info(f'test {metric_name}, {average_test_metric:.4f}')
test_metric_dict[metric_name] = average_test_metric
logger.info(f'new node test loss: {np.mean(new_node_test_losses):.4f}')
for metric_name in new_node_test_metrics[0].keys():
average_new_node_test_metric = np.mean([new_node_test_metric[metric_name] for new_node_test_metric in new_node_test_metrics])
logger.info(f'new node test {metric_name}, {average_new_node_test_metric:.4f}')
new_node_test_metric_dict[metric_name] = average_new_node_test_metric
single_run_time = time.time() - run_start_time
logger.info(f'Run {run + 1} cost {single_run_time:.2f} seconds.')
if args.model_name not in ['TGN']:
val_metric_all_runs.append(val_metric_dict)
new_node_val_metric_all_runs.append(new_node_val_metric_dict)
test_metric_all_runs.append(test_metric_dict)
new_node_test_metric_all_runs.append(new_node_test_metric_dict)
# avoid the overlap of logs
if run < args.num_runs - 1:
logger.removeHandler(fh)
logger.removeHandler(ch)
# save model result
if args.model_name not in ['TGN']:
result_json = {
"validate metrics": {metric_name: f'{val_metric_dict[metric_name]:.4f}' for metric_name in val_metric_dict},
"new node validate metrics": {metric_name: f'{new_node_val_metric_dict[metric_name]:.4f}' for metric_name in new_node_val_metric_dict},
"test metrics": {metric_name: f'{test_metric_dict[metric_name]:.4f}' for metric_name in test_metric_dict},
"new node test metrics": {metric_name: f'{new_node_test_metric_dict[metric_name]:.4f}' for metric_name in new_node_test_metric_dict}
}
else:
result_json = {
"test metrics": {metric_name: f'{test_metric_dict[metric_name]:.4f}' for metric_name in test_metric_dict},
"new node test metrics": {metric_name: f'{new_node_test_metric_dict[metric_name]:.4f}' for metric_name in new_node_test_metric_dict}
}
result_json = json.dumps(result_json, indent=4)
save_result_folder = f"./saved_results/{args.model_name}/{args.dataset_name}"
os.makedirs(save_result_folder, exist_ok=True)
save_result_path = os.path.join(save_result_folder, f"{args.save_model_name}.json")
with open(save_result_path, 'w') as file:
file.write(result_json)
# store the average metrics at the log of the last run
logger.info(f'metrics over {args.num_runs} runs:')
if args.model_name not in ['TGN']:
for metric_name in val_metric_all_runs[0].keys():
logger.info(f'validate {metric_name}, {[val_metric_single_run[metric_name] for val_metric_single_run in val_metric_all_runs]}')
logger.info(f'average validate {metric_name}, {np.mean([val_metric_single_run[metric_name] for val_metric_single_run in val_metric_all_runs]):.4f} '
f'± {np.std([val_metric_single_run[metric_name] for val_metric_single_run in val_metric_all_runs], ddof=1):.4f}')
for metric_name in new_node_val_metric_all_runs[0].keys():
logger.info(f'new node validate {metric_name}, {[new_node_val_metric_single_run[metric_name] for new_node_val_metric_single_run in new_node_val_metric_all_runs]}')
logger.info(f'average new node validate {metric_name}, {np.mean([new_node_val_metric_single_run[metric_name] for new_node_val_metric_single_run in new_node_val_metric_all_runs]):.4f} '
f'± {np.std([new_node_val_metric_single_run[metric_name] for new_node_val_metric_single_run in new_node_val_metric_all_runs], ddof=1):.4f}')
for metric_name in test_metric_all_runs[0].keys():
logger.info(f'test {metric_name}, {[test_metric_single_run[metric_name] for test_metric_single_run in test_metric_all_runs]}')
logger.info(f'average test {metric_name}, {np.mean([test_metric_single_run[metric_name] for test_metric_single_run in test_metric_all_runs]):.4f} '
f'± {np.std([test_metric_single_run[metric_name] for test_metric_single_run in test_metric_all_runs], ddof=1):.4f}')
for metric_name in new_node_test_metric_all_runs[0].keys():
logger.info(f'new node test {metric_name}, {[new_node_test_metric_single_run[metric_name] for new_node_test_metric_single_run in new_node_test_metric_all_runs]}')
logger.info(f'average new node test {metric_name}, {np.mean([new_node_test_metric_single_run[metric_name] for new_node_test_metric_single_run in new_node_test_metric_all_runs]):.4f} '
f'± {np.std([new_node_test_metric_single_run[metric_name] for new_node_test_metric_single_run in new_node_test_metric_all_runs], ddof=1):.4f}')
sys.exit()