Skip to content

RivaGAN: Robust Invisible Video Watermarking with Attention

Notifications You must be signed in to change notification settings

Peachypie98/RivaGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RivaGAN PyTorch (Unofficial)

😯 Before We Start...

This repository is created to assist people encountering difficulties running the offical repository from DAI-Lab, as the official one has not received updates for the past several years. Additionally, I have optimized the official version to enhance execution speed while maintaining overall performance integrity. Lastly, I have conducted testing on Windows 11 using the latest Python 3.11 and PyTorch 2.0.1

😀 Prerequisites

  1. Install PyTorch, Numpy, OpenCV, Pandas, ArgParse
  2. Install GitBash from https://git-scm.com/
  3. Install wget from https://gnuwin32.sourceforge.net/packages/wget.htm
  4. Install Torch DCT using pip install torch_dct

🤪 Let's Get Started!

  1. Clone this repository

  2. Open GitBash Terminal and Download Hollywood2 Training Dataset
    Acquiring the dataset may require several hours, depending upon the speed of your internet connection

    cd data
    bash download.sh
    
  3. Train RivaGAN Model
    The hyperparameter settings align with the official specifications and are currently configured to their default values

    python train.py 
    python train.py --epochs 200 --lr 0.001 --data_dim 64 
    

    Default Hyperparameters Details:

    • --epochs: 300
    • --train_batch: 12
    • --lr: 0.0005
    • --num_workers: 16
    • --data_dim: 32
    • --use_critic: True
    • --use_adversary: True
    • --use_noise: True
    • --use_bit_inverse: True
  4. Inference RivaGAN Model
    After completing the model training, our objective is to encode a data watermark onto a video and subsequently extract it from the encoded footage. After the inference process, it will generate output_log.txt file, providing a detailed record of the extracted data from each frame in the video and a watermarked video that contains the data

    python inference.py --model_weight your_weight_path/model.pt
    python inference.py --model_weight your_weight_path/model.pt --random_data No --your_data "1100 1001 0011 0000 1111 0101 1100 0011" --fps 30
    

    Default Hyperparameters Details:

    • --data_dim: 32
      • The data dimensions must correspond with the dimensions used during the model training
    • --model_weight: None
      • Must be added
    • --random_data: Yes
    • --your_data: None
      • Set --random_data to No to use your own data
    • --video_location: ./data/hollywood2/val/actioncliptest00002.avi
    • --fps: 25
      • Watermaked video output FPS

Changelog

2024-05-23

  • make_pair function has been reverted to its original code due to instability issues during training

2024-04-18

  • Incorporated pre-trained RivaGAN model, which was trained using 32-bit data dimensions

2023-01-23

  • Enhanced code optimization for encoding and decoding processes (3.5 ~ 4x speed increase)