Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Cleanup][B-5] clean some to_variable for test #61530

Merged
merged 1 commit into from
Feb 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions test/contrib/test_correlation.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@

import paddle
from paddle import base
from paddle.base.dygraph.base import to_variable

paddle.enable_static()

Expand Down Expand Up @@ -176,8 +175,8 @@ def test_check_output(self):
stride2=1,
)

x1 = to_variable(x1_np)
x2 = to_variable(x2_np)
x1 = paddle.to_tensor(x1_np)
x2 = paddle.to_tensor(x2_np)
corr_pd = Net('corr_pd')
y = corr_pd(x1, x2)
out = y.numpy()
Expand Down
9 changes: 4 additions & 5 deletions test/dygraph_to_static/test_cycle_gan.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,6 @@
)

import paddle
from paddle.base.dygraph import to_variable
from paddle.nn import BatchNorm

# Note: Set True to eliminate randomness.
Expand Down Expand Up @@ -584,8 +583,8 @@ def train(args):
data_B = np.array(
[data_B[0].reshape(3, IMAGE_SIZE, IMAGE_SIZE)]
).astype("float32")
data_A = to_variable(data_A)
data_B = to_variable(data_B)
data_A = paddle.to_tensor(data_A)
data_B = paddle.to_tensor(data_B)

# optimize the g_A network
(
Expand All @@ -610,13 +609,13 @@ def train(args):
fake_pool_B = np.array(
[fake_pool_B[0].reshape(3, IMAGE_SIZE, IMAGE_SIZE)]
).astype("float32")
fake_pool_B = to_variable(fake_pool_B)
fake_pool_B = paddle.to_tensor(fake_pool_B)

fake_pool_A = A_pool.pool_image(fake_A).numpy()
fake_pool_A = np.array(
[fake_pool_A[0].reshape(3, IMAGE_SIZE, IMAGE_SIZE)]
).astype("float32")
fake_pool_A = to_variable(fake_pool_A)
fake_pool_A = paddle.to_tensor(fake_pool_A)

# optimize the d_A network
discriminatorA_to_static = paddle.jit.to_static(
Expand Down
4 changes: 2 additions & 2 deletions test/dygraph_to_static/test_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def __init__(self, hidden_size=16, output_size=16):
)

def forward(self, input, cache=None):
input = base.dygraph.to_variable(input)
input = paddle.to_tensor(input)

q = self.q_fc(input)
k = self.k_fc(input)
Expand Down Expand Up @@ -83,7 +83,7 @@ def __init__(self, batch_size=64, hidden_size=16, output_size=16):
self.sub_net = SubNetWithDict(hidden_size, output_size)

def forward(self, input, max_len=4):
input = base.dygraph.to_variable(input)
input = paddle.to_tensor(input)
cache = {
"k": paddle.tensor.fill_constant(
shape=[self.batch_size, self.output_size],
Expand Down
2 changes: 1 addition & 1 deletion test/legacy_test/test_conv2d_transpose_layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,7 +176,7 @@ def functional(self, place):
return y_np

def paddle_nn_layer(self):
x_var = dg.to_variable(self.input)
x_var = paddle.to_tensor(self.input)

if self.output_padding != 0:
output_size = None
Expand Down
2 changes: 1 addition & 1 deletion test/legacy_test/test_conv3d_transpose_layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ def functional(self, place):
return y_np

def paddle_nn_layer(self):
x_var = dg.to_variable(self.input)
x_var = paddle.to_tensor(self.input)
conv = nn.Conv3DTranspose(
self.num_channels,
self.num_filters,
Expand Down
8 changes: 4 additions & 4 deletions test/legacy_test/test_cross_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -197,8 +197,8 @@ def test_dygraph_api(self):
self.input_data()
# case 1:
# with base.dygraph.guard():
# x = base.dygraph.to_variable(self.data_x)
# y = base.dygraph.to_variable(self.data_y)
# x = paddle.to_tensor(self.data_x)
# y = paddle.to_tensor(self.data_y)
# z = paddle.cross(x, y)
# np_z = z.numpy()
# expect_out = np.array([[-1.0, -1.0, -1.0], [2.0, 2.0, 2.0],
Expand All @@ -207,8 +207,8 @@ def test_dygraph_api(self):

# case 2:
with base.dygraph.guard():
x = base.dygraph.to_variable(self.data_x)
y = base.dygraph.to_variable(self.data_y)
x = paddle.to_tensor(self.data_x)
y = paddle.to_tensor(self.data_y)
z = paddle.cross(x, y, axis=1)
np_z = z.numpy()
expect_out = np.array(
Expand Down
7 changes: 3 additions & 4 deletions test/legacy_test/test_detach.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@

import paddle
from paddle import base
from paddle.base.dygraph.base import to_variable
from paddle.nn import Linear


Expand Down Expand Up @@ -68,7 +67,7 @@ def no_detach_multi(self):
weight_attr=linear2_w_param_attrs,
bias_attr=linear2_b_param_attrs,
)
data = to_variable(data)
data = paddle.to_tensor(data)
x = linear(data)
x1 = linear1(x)
x2 = linear2(x)
Expand Down Expand Up @@ -104,7 +103,7 @@ def no_detach_single(self):
weight_attr=linear1_w_param_attrs,
bias_attr=linear1_b_param_attrs,
)
data = to_variable(data)
data = paddle.to_tensor(data)
x = linear(data)
x.retain_grads()
x1 = linear1(x)
Expand Down Expand Up @@ -152,7 +151,7 @@ def detach_multi(self):
weight_attr=linear2_w_param_attrs,
bias_attr=linear2_b_param_attrs,
)
data = to_variable(data)
data = paddle.to_tensor(data)
x = linear(data)
x.retain_grads()
x_detach = x.detach()
Expand Down
15 changes: 7 additions & 8 deletions test/legacy_test/test_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
import paddle
from paddle import base
from paddle.base import core
from paddle.base.dygraph import base as imperative_base
from paddle.base.framework import Program, program_guard
from paddle.pir_utils import test_with_pir_api

Expand Down Expand Up @@ -138,11 +137,11 @@ def test_generate_proposals(self):
)

with self.dynamic_graph():
scores_dy = imperative_base.to_variable(scores_np)
bbox_deltas_dy = imperative_base.to_variable(bbox_deltas_np)
im_info_dy = imperative_base.to_variable(im_info_np)
anchors_dy = imperative_base.to_variable(anchors_np)
variances_dy = imperative_base.to_variable(variances_np)
scores_dy = paddle.to_tensor(scores_np)
bbox_deltas_dy = paddle.to_tensor(bbox_deltas_np)
im_info_dy = paddle.to_tensor(im_info_np)
anchors_dy = paddle.to_tensor(anchors_np)
variances_dy = paddle.to_tensor(variances_np)
rois, roi_probs, rois_num = paddle.vision.ops.generate_proposals(
scores_dy,
bbox_deltas_dy,
Expand Down Expand Up @@ -219,8 +218,8 @@ def static_distribute_fpn_proposals(self, rois_np, rois_num_np):

def dynamic_distribute_fpn_proposals(self, rois_np, rois_num_np):
with self.dynamic_graph():
rois_dy = imperative_base.to_variable(rois_np)
rois_num_dy = imperative_base.to_variable(rois_num_np)
rois_dy = paddle.to_tensor(rois_np)
rois_num_dy = paddle.to_tensor(rois_num_np)
(
multi_rois_dy,
restore_ind_dy,
Expand Down