Skip to content

Commit

Permalink
[Cleanup][B-20] Replace to_variable with to_tensor (#61546)
Browse files Browse the repository at this point in the history

---------

Co-authored-by: Nyakku Shigure <sigure.qaq@gmail.com>
  • Loading branch information
co63oc and SigureMo authored Feb 19, 2024
1 parent 0b7b20d commit e2ed732
Show file tree
Hide file tree
Showing 5 changed files with 18 additions and 26 deletions.
7 changes: 3 additions & 4 deletions python/paddle/distributed/fleet/scaler.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@

import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle.base.dygraph import to_variable
from paddle.distributed import fleet
from paddle.framework import core

Expand Down Expand Up @@ -102,9 +101,9 @@ def unscale_method(self, optimizer):
else:
param_grads_fp32.append(tgt_grad)

temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool_))
temp_found_inf_bf16 = to_variable(np.array([0]).astype(np.bool_))
temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool_))
temp_found_inf_fp16 = paddle.to_tensor(np.array([0]).astype(np.bool_))
temp_found_inf_bf16 = paddle.to_tensor(np.array([0]).astype(np.bool_))
temp_found_inf_fp32 = paddle.to_tensor(np.array([0]).astype(np.bool_))
self._found_inf = self._temp_found_inf_value_false
if len(param_grads_fp16):
_legacy_C_ops.check_finite_and_unscale(
Expand Down
15 changes: 8 additions & 7 deletions python/paddle/hapi/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,6 @@
from paddle import base
from paddle.autograd import no_grad
from paddle.base import core
from paddle.base.dygraph.base import to_variable
from paddle.base.executor import global_scope
from paddle.base.framework import (
Variable,
Expand Down Expand Up @@ -824,7 +823,7 @@ def train_batch(self, inputs, labels=None, update=True):
inputs = to_list(inputs)
self._input_info = _update_input_info(inputs)
labels = labels or []
labels = [to_variable(l) for l in to_list(labels)]
labels = [paddle.to_tensor(l) for l in to_list(labels)]

# scaler should be initialized only once
if self._amp_level != "O0" and self.model._scaler is None:
Expand All @@ -836,9 +835,11 @@ def train_batch(self, inputs, labels=None, update=True):
level=self._amp_level,
):
if self._nranks > 1:
outputs = self.ddp_model(*[to_variable(x) for x in inputs])
outputs = self.ddp_model(*[paddle.to_tensor(x) for x in inputs])
else:
outputs = self.model.network(*[to_variable(x) for x in inputs])
outputs = self.model.network(
*[paddle.to_tensor(x) for x in inputs]
)

losses = self.model._loss(*(to_list(outputs) + labels))
losses = to_list(losses)
Expand Down Expand Up @@ -874,9 +875,9 @@ def eval_batch(self, inputs, labels=None):
inputs = to_list(inputs)
self._input_info = _update_input_info(inputs)
labels = labels or []
labels = [to_variable(l) for l in to_list(labels)]
labels = [paddle.to_tensor(l) for l in to_list(labels)]

outputs = self.model.network(*[to_variable(x) for x in inputs])
outputs = self.model.network(*[paddle.to_tensor(x) for x in inputs])

# Transfrom data to expected device
expected_device = paddle.device.get_device()
Expand Down Expand Up @@ -933,7 +934,7 @@ def eval_batch(self, inputs, labels=None):
def predict_batch(self, inputs):
self.model.network.eval()
self.mode = 'test'
inputs = [to_variable(x) for x in to_list(inputs)]
inputs = [paddle.to_tensor(x) for x in to_list(inputs)]
self._input_info = _update_input_info(inputs)
outputs = self.model.network(*inputs)
if self._nranks > 1 and isinstance(self.model._place, base.CUDAPlace):
Expand Down
7 changes: 2 additions & 5 deletions python/paddle/nn/functional/loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -3207,10 +3207,7 @@ def sigmoid_focal_loss(
),
)

if in_dynamic_mode():
alpha = base.dygraph.base.to_variable([alpha], dtype=loss.dtype)
else:
alpha = paddle.to_tensor(alpha, dtype=loss.dtype)
alpha = paddle.to_tensor(alpha, dtype=loss.dtype)
alpha_t = _C_ops.add(
_C_ops.multiply(alpha, label),
_C_ops.multiply(
Expand All @@ -3220,7 +3217,7 @@ def sigmoid_focal_loss(
loss = _C_ops.multiply(alpha_t, loss)

if in_dynamic_mode():
gamma = base.dygraph.base.to_variable([gamma], dtype=loss.dtype)
gamma = paddle.to_tensor(gamma, dtype=loss.dtype)
gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
loss = _C_ops.multiply(gamma_t, loss)

Expand Down
12 changes: 4 additions & 8 deletions python/paddle/nn/layer/norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -935,17 +935,13 @@ class BatchNorm(Layer):
Examples:
.. code-block:: python
>>> import paddle.base as base
>>> import paddle.nn as nn
>>> from paddle.base.dygraph.base import to_variable
>>> import paddle
>>> import numpy as np
>>> x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
>>> with base.dygraph.guard():
... x = to_variable(x)
... batch_norm = nn.layer.norm.BatchNorm(10)
... hidden1 = batch_norm(x)
>>> x = paddle.rand(shape=(3, 10, 3, 7), dtype="float32")
>>> batch_norm = nn.BatchNorm(10)
>>> hidden1 = batch_norm(x)
"""

def __init__(
Expand Down
3 changes: 1 addition & 2 deletions python/paddle/pir/math_op_patch.py
Original file line number Diff line number Diff line change
Expand Up @@ -518,13 +518,12 @@ def clear_gradient(self):
.. code-block:: python
>>> import paddle
>>> import paddle.base as base
>>> import numpy as np
>>> x = np.ones([2, 2], np.float32)
>>> inputs2 = []
>>> for _ in range(10):
>>> tmp = base.dygraph.base.to_variable(x)
>>> tmp = paddle.to_tensor(x)
>>> tmp.stop_gradient=False
>>> inputs2.append(tmp)
>>> ret2 = paddle.add_n(inputs2)
Expand Down

0 comments on commit e2ed732

Please sign in to comment.