Skip to content

Commit

Permalink
Merge pull request #405 from Sarthak-Biswas/Fixes
Browse files Browse the repository at this point in the history
Fixed unfitted gaussianDB problem
  • Loading branch information
adeyosemanputra authored Apr 17, 2023
2 parents b7134c5 + c043cfd commit 7a2da87
Show file tree
Hide file tree
Showing 5 changed files with 36 additions and 28 deletions.
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -97,3 +97,4 @@ Werkzeug>=2.1.2
wget>=3.2
XlsxWriter>=3.0.3
yara-python>=4.2.0
tensorflow>=2.12.0
25 changes: 13 additions & 12 deletions securetea/lib/waf/Server/classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,14 +42,13 @@ def __init__(self,live_data):
A class that initialise the required variables
"""


self.live_data=[live_data]
# Takes 2 live data
self.live_data=[[live_data[0], live_data[2]]]



datapath = Path(os.path.dirname(__file__)).parent / "data/data_updated.csv"
modelpath = Path(os.path.dirname(__file__)).parent / "data/modeltestgram.sav"
modelpath = Path(os.path.dirname(__file__)).parent / "data/model"



Expand All @@ -63,12 +62,14 @@ def __init__(self,live_data):

self.target = self.data["label"]
self.path_vectorizer = TfidfVectorizer(tokenizer=get3Grams,encoding="cp1252")

# TODO: body currently contains no useful values, for which predictions are False. Will be updated soon.
self.body_vectorizer = TfidfVectorizer(tokenizer=get3Grams,encoding="cp1252")
self.model=GaussianNB()

# Feature selection

self.X=self.data[['path','body','path_len']]
self.X=self.data[['path','path_len']]

self.X_train,self.X_test,self.Y_train,self.Y_test=train_test_split(self.X,self.target,test_size=0.2)

Expand All @@ -90,7 +91,7 @@ def train_model(self):

# Column Transformer

self.column_transformer = ColumnTransformer([('tf-1', self.path_vectorizer, 'path'),('tf-2',self.body_vectorizer,'body'),], remainder='passthrough', sparse_threshold=0)
self.column_transformer = ColumnTransformer([('tf-1', self.path_vectorizer, 'path')], remainder='passthrough', sparse_threshold=0)

# Creating Pipeline

Expand All @@ -104,12 +105,12 @@ def train_model(self):

self.pipe.fit(self.X_train,self.Y_train)

with open("model", "wb") as f:
pickle.dump(self.pipe, f)

joblib.dump(self.pipe, self.MODEL_PATH)

self.ddos = TrainDDoS()
self.ddos.train()

# TODO: will be implemented soon
""" self.ddos = TrainDDoS()
self.ddos.train() """



Expand Down Expand Up @@ -139,7 +140,7 @@ def predict_model(self):
except Exception as E:
print(E)

self.live_df = pd.DataFrame(self.live_data,columns=['path','body','path_len','special_char','whitespaces'])
self.live_df = pd.DataFrame(self.live_data,columns=['path','path_len'])
return self.model.predict(self.live_df)


32 changes: 16 additions & 16 deletions securetea/lib/waf/Server/reqHandler.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,34 +138,34 @@ def data_received(self, data):

# Model to detect DDoS attacks

self.ddos = DetectDDoS(self.feature_value)
self.predicted_ddos = self.ddos.predict()
# self.ddos = DetectDDoS(self.feature_value)
# self.predicted_ddos = self.ddos.predict()

# Blocks if detects ddos

if self.predicted_ddos == 1:
# if self.predicted_ddos == 1:

message="DoS from {}".format(headers["X-Real-IP"])
# message="DoS from {}".format(headers["X-Real-IP"])

self.logger.log(
message,
logtype="warning"
)
# self.logger.log(
# message,
# logtype="warning"
# )

self.transport.close()
self.waflogger.write_log(message)
# # self.transport.close()
# self.waflogger.write_log(message)

# Based on mode Block or Log Request

if self.mode==0 and predicted_value[0]==1:

# Inserts block status, attacker IP, payload to the database for frontend
db_log = {'blocked': 0,
# TODO: Inserts block status, attacker IP, payload to the database for frontend
""" db_log = {'blocked': 0,
'From': headers["X-Real-IP"],
'payload': path}
dataObj = DatabaseLogs(db_log)
dataObj.insert_log()
dataObj.insert_log() """

# Log the file and send the Request
message="Attack Detected from :{} Payload:{}".format(headers["X-Real-IP"],path)
Expand All @@ -179,13 +179,13 @@ def data_received(self, data):

if self.mode==1 and predicted_value[0]==1:

# Inserts block status, attacker IP, payload to the database for frontend
db_log = {'blocked': 1,
# TODO: Inserts block status, attacker IP, payload to the database for frontend
""" db_log = {'blocked': 1,
'From': headers["X-Real-IP"],
'payload': path}
dataObj = DatabaseLogs(db_log)
dataObj.insert_log()
dataObj.insert_log() """

# Reset the Request
message="Attack Detected ! Request Blocked from :{}".format(headers["X-Real-IP"])
Expand Down
Binary file added securetea/lib/waf/data/model
Binary file not shown.
6 changes: 6 additions & 0 deletions train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
from securetea.lib.waf.Server.classifier import WAF

# Train the WAF classifier in case of any error occurs.

train = WAF([None, None, None])
train.train_model()

0 comments on commit 7a2da87

Please sign in to comment.